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Abstract: Accurate and early prediction of diabetes is 

critical for effective disease management and timely 

intervention. This study proposes a hybrid deep 

learning framework that integrates a bio-inspired 

feature selection technique with a deep neural network 

(DNN) classifier to enhance predictive performance. 

An improved Shuffled Frog Leaping Algorithm 

(SFLA) is employed to select the most informative 

features using a multi-objective fitness function 

combining classification accuracy and feature subset 

compactness. The optimised features are then input 

into a regularised DNN equipped with dropout layers 

and a softmax-based attention mechanism to improve 

generalisation and interpretability. Bayesian 

hyperparameter tuning and early stopping further 

refine the training process. The model is evaluated on 

the PIMA Indians Diabetes Dataset using stratified 10-

fold cross-validation. The proposed method achieves 

86.4% accuracy, 82.1% F1-score, and 0.91 AUC, 

outperforming traditional classifiers such as SVM, 

Random Forest, and standard DNNs. This approach 

provides a robust, scalable, and explainable 

framework for effective diabetes prediction in clinical 

environments.   
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1. Introduction 

Diabetes mellitus is a globally prevalent chronic 

metabolic disorder that significantly contributes to 

morbidity and mortality, particularly in low- and 

middle-income countries. As of 2017, the estimated 

number of people living with diabetes stood at 451 

million, a figure projected to rise to 693 million by 

2045, with nearly half remaining undiagnosed [4]. In 

the same year, global healthcare expenditures related 

to diabetes were reported to be approximately USD 

850 billion [5]. These alarming statistics underline not 

only the clinical significance of early diagnosis but 

also the economic urgency of improving predictive 

capabilities in healthcare systems. Despite 

advancements in clinical diagnostics and biological 

research, traditional diabetes diagnosis relies heavily 

on manual interpretation by healthcare professionals, 

which is prone to variability and human error. 

Additionally, the growing volume of health-related 

data collected via electronic health records (EHRs), 

wearable devices, and screening programs has created 

new opportunities to enhance medical decision-

making using computational approaches. Predictive 

analytics, particularly through machine learning (ML) 

and deep learning (DL), has emerged as a promising 

solution for automating and improving the accuracy of 

disease detection, including diabetes. Machine 

learning techniques such as Support Vector Machines 

(SVM), Decision Trees (DT), and Random Forests 

(RF) have been successfully employed in several 

clinical applications due to their ability to model non-

linear relationships and handle diverse data types. In 

diabetes prediction, these models have demonstrated 

moderate success when applied to datasets with 

structured features such as glucose levels, BMI, age, 

and family history [1, 6]. However, traditional ML 

models often fall short in scalability and performance 

when dealing with high-dimensional, imbalanced, or 

noisy data, a common occurrence in medical datasets. 

To overcome these limitations, researchers have 

turned toward deep learning, particularly Deep Neural 
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Networks (DNNs), for their superior capacity to learn 

complex hierarchical patterns from raw data. DNNs 

have achieved state-of-the-art performance in a range 

of healthcare tasks, including image-based 

diagnostics, time-series analysis, and disease 

progression modelling [6]. 

Nevertheless, their high computational demands, 

sensitivity to overfitting, and lack of interpretability 

pose significant barriers to clinical deployment. A key 

challenge in using DNNs for medical diagnostics lies 

in the quality and relevance of input features. Many 

features in clinical datasets may be redundant, 

irrelevant, or noisy, reducing model performance and 

increasing training time. Therefore, incorporating an 

effective feature selection mechanism is critical. Bio-

inspired optimisation algorithms such as Genetic 

Algorithms (GA), Particle Swarm Optimisation 

(PSO), and Ant Colony Optimisation (ACO)have 

shown remarkable effectiveness in this domain due to 

their ability to explore complex search spaces and 

identify optimal feature subsets [8], [11]. In this 

research, we propose a novel hybrid framework that 

integrates an enhanced Shuffled Frog Leaping 

Algorithm (SFLA) with a deep neural network 

classifier to improve the accuracy and efficiency of 

diabetes prediction. The SFLA is a nature-inspired 

metaheuristic that simulates the memetic evolution of 

frog populations and performs both local and global 

search using adaptive memeplex reshuffling and 

diversity-preserving mechanisms. An improved 

version of SFLA is used to select the most informative 

subset of features using a multi-objective fitness 

function that jointly optimises classification accuracy 

and model simplicity. The selected features are then 

used to train a regularised DNN equipped with dropout 

layers and an attention mechanism, which enhances 

both generalisation and interpretability. 

Furthermore, hyperparameters are optimised using 

Bayesian search techniques, and the model is 

evaluated using stratified 10-fold cross-validation on 

the PIMA Indians Diabetes Dataset [4]. The 

integration of intelligent feature selection with a robust 

DNN architecture results in superior predictive 

performance and reduced complexity, while also 

enhancing model transparency through SHAP-based 

explanations. In summary, the key contributions of 

this study are: 

• An improved bio-inspired feature selection 

method using SFLA tailored for medical datasets. 

• A deep neural network architecture with dropout 

and attention for improved classification; 

• Bayesian hyperparameter optimisation for 

efficient model tuning; 

• Demonstrated improvements in prediction 

accuracy, F1-score, and AUC over baseline ML 

models. 

2. Related Work 

In recent years, the application of artificial intelligence 

(AI) and machine learning (ML) in medical 

diagnostics has grown rapidly, offering new 

possibilities for early and accurate detection of chronic 

diseases such as diabetes. Traditional ML algorithms 

like Support Vector Machines (SVM), Decision Trees 

(DT), k-Nearest Neighbours (k-NN), and Logistic 

Regression have been extensively used for classifying 

diabetic and non-diabetic patients based on clinical 

features such as age, glucose levels, BMI, insulin, and 

blood pressure [6]. These models are particularly 

valued for their simplicity, interpretability, and 

effectiveness on structured tabular datasets like the 

PIMA Indians Diabetes Dataset (PIDD) [2, 4]. 

However, their performance often degrades in the 

presence of high-dimensional data or noise, as they 

lack mechanisms for automated feature extraction and 

non-linear representation learning. To overcome these 

limitations, deep learning (DL) models such as 

Artificial Neural Networks (ANN), Convolutional 

Neural Networks (CNN), and Recurrent Neural 

Networks (RNN) have been increasingly adopted in 

the healthcare domain. These models offer superior 

predictive capabilities by capturing complex, non-

linear patterns in data, especially when large volumes 

of labelled training samples are available [6], [19]. 

CNNs have shown notable success in image-based 

diagnostics, such as diabetic retinopathy detection, 
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while RNNs are effective in modelling sequential data 

like blood glucose trends over time [6], [19]. 

Additionally, Long Short-Term Memory (LSTM) 

networks have been applied to predict future blood 

glucose levels, enabling real-time monitoring and 

management of diabetes [5, 6]. Ensemble learning 

techniques, including Random Forest (RF), AdaBoost, 

and Gradient Boosting Machines (GBM), have also 

been explored to enhance model robustness. Among 

these, XGBoost has demonstrated exceptional 

performance in classification tasks due to its 

regularisation capabilities and ability to handle 

missing data [6]. Moreover, hybrid frameworks 

combining multiple classifiers or integrating feature 

selection with ensemble methods have shown 

improvements in performance, particularly in 

handling imbalanced or sparse datasets [6, 15,16, 19]. 

Despite these advances, one major challenge in 

predictive modelling for healthcare remains: the high 

dimensionality and noise present in real-world clinical 

data. To address this, nature-inspired optimisation 

algorithms have been increasingly utilised for feature 

selection and hyperparameter tuning. Genetic 

Algorithms (GA), inspired by Darwinian evolution, 

use crossover and mutation operations to explore the 

solution space [7, 8,  17]. Particle Swarm Optimisation 

(PSO), modelled after bird flocking behaviour, 

dynamically updates candidate solutions based on 

individual and group knowledge [11]. Ant Colony 

Optimisation (ACO) simulates the pheromone trail-

laying behaviour of ants to discover optimal paths and 

has been applied in feature selection and classification 

tasks [9, 10]. Bee Colony Optimisation (BCO), 

leveraging the foraging behaviour of bees, further 

enhances the search process through decentralised 

intelligence and random exploration [12]. Among 

these, the Shuffled Frog Leaping Algorithm (SFLA) 

has gained popularity for its ability to perform both 

local and global search through memeplex-based 

optimisation. SFLA mimics the memetic evolution of 

frog populations and is effective in navigating 

complex search spaces [5]. However, many existing 

studies applying these bio-inspired techniques still 

face limitations such as premature convergence, 

limited diversity in the population, or high 

computational overhead during execution [5], [8]. In 

parallel, another persistent issue in healthcare AI is the 

lack of interpretability. While DL models achieve high 

accuracy, their black-box nature limits clinical 

adoption, especially when model decisions cannot be 

easily explained. Recent work has attempted to 

address this using explainable AI (XAI) techniques 

such as SHAP (Shapley Additive Explanations) and 

LIME (Local Interpretable Model-Agnostic 

Explanations), which provide post hoc insights into 

feature importance and decision rationale [6,13,14], 

[18]. However, the integration of XAI within hybrid 

models remains limited. In summary, although 

significant progress has been made using ML, DL, and 

optimisation techniques for diabetes prediction, 

challenges remain in achieving an optimal trade-off 

between accuracy, computational efficiency, and 

model interpretability. This motivates the 

development of hybrid frameworks like the one 

proposed in this study that combine bio-inspired 

feature selection with interpretable and regularised 

deep learning architectures, to produce clinically 

reliable predictions. 

3. Proposed Methodology 

This study presents a novel hybrid framework that 

integrates an enhanced Shuffled Frog Leaping 

Algorithm (SFLA) for feature selection with a Deep 

Neural Network (DNN) for accurate diabetes 

prediction. The goal is to address challenges such as 

redundant features, class imbalance, and overfitting, 

while maintaining high predictive performance and 

model interpretability. The methodology consists of 

four primary modules: data preprocessing, SFLA-

based feature selection, DNN classification, and 

hyperparameter optimisation. 

3.1 Hybrid Architecture Overview 

The proposed framework, termed SFLANN (Shuffled 

Frog Leaping Algorithm Neural Network), integrates 

three primary components to enhance predictive 

performance and efficiency: (i) an improved Shuffled 

Frog Leaping Algorithm (SFLA) module for selecting 

the most informative clinical features, (ii) a 
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regularised Deep Neural Network (DNN) for robust 

classification, and (iii) a Bayesian optimisation engine 

for fine-tuning hyperparameters [4]. As depicted in 

Figure 1 of the thesis, this modular architecture 

operates in a sequential pipeline, where the output 

from the SFLA feature selector directly feeds into the 

input layer of the DNN. This integration significantly 

reduces model complexity and shortens training time 

while preserving classification accuracy. 

 

Figure 1 Deep neural network (DNN) 

architecture for diabetes classification 

3.2 Feature Selection Using Enhanced SFLA 

The Shuffled Frog Leaping Algorithm (SFLA) is a 

population-based metaheuristic inspired by memetic 

evolution and the cooperative behaviour of frog 

swarms. In this work, SFLA is strategically enhanced 

to improve both its convergence speed and feature 

selection capabilities. Each candidate solution (frog) is 

encoded as a binary chromosome, where each bit 

indicates the inclusion (1) or exclusion (0) of a specific 

feature. The frog population is divided into multiple 

memeplexes that evolve independently through local 

search operations. To maintain global search 

effectiveness and avoid premature convergence to 

local optima, an adaptive memeplex reshuffling 

mechanism is periodically applied [4]. 

Additionally, elite retention is employed, wherein the 

top 10% of frogs based on fitness scores are preserved 

across generations to maintain high-quality solutions 

[4]. A repair mechanism is also integrated to ensure 

that a minimum number of features are always 

selected, thereby preventing degenerate or invalid 

solutions [4]. The optimisation is guided by a multi-

objective fitness function that balances classification 

accuracy and feature subset size. The fitness function 

is defined as: 

Fitness = α·(1 − Accuracy) + (1 − α)·(|S| / |F|), 

where |S| is the number of selected features, |F| is the 

total number of features, and α = 0.8 controls the trade-

off between maximising accuracy and minimising 

model complexity [4]. 

3.3 Deep Neural Network Design 

The optimised feature set derived from the enhanced 

SFLA is used as input to train a custom Deep Neural 

Network (DNN) designed for binary classification 

tasks. The network begins with an input layer whose 

dimensionality corresponds to the number of selected 

features, typically ranging between 4 and 7. This is 

followed by three fully connected hidden layers 

consisting of 64, 32, and 16 neurons, respectively, 

each employing the ReLU activation function to 

introduce non-linearity and enhance learning capacity. 

To improve the model’s interpretability and 

sensitivity, a softmax-based attention mechanism is 

incorporated after the second hidden layer. This 

mechanism dynamically assigns importance weights 

to intermediate neurons, allowing the network to focus 

on more informative representations [4]. The final 

output layer consists of a single neuron activated by 

the sigmoid function, facilitating binary classification 

(e.g., diabetic vs. non-diabetic). To mitigate 

overfitting, dropout layers with a dropout rate of 0.3 

are applied after each hidden layer, and L2 weight 

regularisation is also enforced during training [4]. 

3.4 Hyperparameter Optimisation and Learning 

Rate Scheduling 

Hyperparameter tuning is carried out using Bayesian 

optimisation implemented through the Optuna 

framework, which employs the Tree-structured Parzen 

Estimator (TPE) to model the objective function—

specifically, the validation loss and propose promising 

hyperparameter configurations [4, 27]. The defined 

search space encompasses a wide range of key 
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parameters: the learning rate varies from 1×10⁻⁵ to 

1×10⁻¹, batch sizes are selected from the set {16, 32, 

64}, dropout rates range between 0.1 and 0.5, hidden 

units per layer span from 16 to 128, and L2 

regularisation strength ranges from 1×10⁻⁶ to 1×10⁻². 

To ensure stable training, the ReduceLROnPlateau 

callback is employed, which dynamically lowers the 

learning rate if the validation loss does not improve 

over time [4]. Furthermore, early stopping is 

integrated to terminate training if no improvement is 

observed in validation performance for 10 consecutive 

epochs, thereby preventing overfitting and reducing 

unnecessary computational overhead. 

In conclusion, the proposed SFLANN framework 

combines the dimensionality reduction strength of 

SFLA with the representational power of deep 

learning. By integrating attention mechanisms, 

dropout, and Bayesian optimisation, the model 

achieves high accuracy, robustness, and 

interpretability for diabetes prediction. 

4. Experimental Setup and Dataset 

This study utilises the PIMA Indians Diabetes 

Database (PIDD), a benchmark dataset for binary 

classification of diabetic vs. non-diabetic patients. It 

comprises 768 records of female patients of Pima 

Indian heritage aged 21 and above, collected by the 

National Institute of Diabetes and Digestive and 

Kidney Diseases (NIDDK) and made publicly 

available via the UCI Machine Learning Repository. 

Each instance includes eight numeric clinical 

attributes and one binary target variable (“Outcome”) 

indicating diabetes status (1 for diabetic, 0 for non-

diabetic). 

4.1 Data Preprocessing 

The raw dataset exhibited zero values in several 

clinical features, such as Glucose, Blood Pressure, 

Skin Thickness, Insulin, and BMI, which likely 

indicate missing data rather than true physiological 

measurements. Notably, features like Insulin and Skin 

Thickness had missing value rates of 48.7% and 

29.56%, respectively. To address this issue, mean 

imputation was applied to features with relatively low 

rates of missingness, such as Glucose and Blood 

Pressure, ensuring minimal distortion of their 

distributions. For features with higher skewness, like 

Insulin, median imputation was employed to provide a 

more robust central estimate. Outliers were detected 

using the Interquartile Range (IQR) method and 

visualised through boxplots; depending on their 

severity, some outliers were either removed or 

winsorised to mitigate their impact on the model. Prior 

to feeding the data into the neural network, Min-Max 

normalisation was applied to rescale all attributes to 

the [0, 1] range, standardising variables with different 

units and magnitudes, e.g., Glucose (0–199) and 

Diabetes Pedigree Function (0.08–2.42) were 

transformed to a uniform scale. To address the 

inherent class imbalance in the dataset (65.1% non-

diabetic vs. 34.9% diabetic), the Synthetic Minority 

Oversampling Technique (SMOTE) was employed, 

thereby augmenting the minority class and enabling 

the model to learn its underlying patterns better. 

4.3 Hardware Configuration 

All training and testing were conducted on a Windows 

11 Pro system with an Intel Core i7-12700K (12-core) 

CPU, 32 GB DDR5 RAM, and an NVIDIA RTX 3060 

Ti GPU (8 GB VRAM) with CUDA 12.1 support. This 

enabled efficient GPU-accelerated training and 

parallelised hyperparameter tuning using Optuna. 

5. Results and Performance Analysis 

To assess the effectiveness of the proposed hybrid 

model for diabetes prediction, a comprehensive 

evaluation was conducted using a combination of 

performance metrics, baseline comparisons, and 

interpretability analysis. The results demonstrate that 

the integration of enhanced feature selection using 

Shuffled Frog Leaping Algorithm (SFLA) and a tuned 

deep neural network (DNN) significantly improves 

classification accuracy, robustness, and clinical 

transparency. 

5.1 Evaluation Metrics 

The model’s performance was evaluated using several 

standard metrics relevant to binary classification: 

• Accuracy: Proportion of total correct predictions. 



International Journal of Innovative Research in Technology and Science 
ISSN: 2321-1156         www.ijirts.org                                    Volume 12 Issue 3, May 2024 
 

6 

• Precision: True positives divided by all predicted 

positives. 

• Recall (Sensitivity): True positives divided by all 

actual positives. 

• F1-Score: Harmonic mean of precision and recall, 

useful for imbalanced datasets. 

• AUC (Area Under ROC Curve): Measures the 

model’s ability to distinguish between classes 

across thresholds. 

• MCC (Matthews Correlation Coefficient): A 

robust metric for imbalanced data that considers 

all confusion matrix elements. 

5.2 Performance on Validation Set 

Using 80% of the dataset for training and the 

remaining 20% for testing, the proposed DNN model, 

trained on the optimal feature subset selected by the 

enhanced SFLA, achieved strong performance across 

multiple evaluation metrics. Specifically, it attained an 

accuracy of 86.4%, precision of 83.1%, recall of 

81.2%, F1-score of 82.1%, an AUC of 0.91, and a 

Matthews Correlation Coefficient (MCC) of 0.72. 

These results indicate a significant improvement over 

conventional machine learning models and highlight 

the model’s robustness and generalisation capability, 

even in the presence of class imbalance. 

5.3 10-Fold Cross-Validation 

To ensure the robustness and generalisability of the 

proposed model, a 10-fold stratified cross-validation 

was performed. This approach maintained class 

distribution across each fold and provided a 

comprehensive evaluation. The average performance 

metrics obtained across all folds were: an accuracy of 

85.7% (±1.2%), precision of 82.5% (±1.3%), recall of 

80.6% (±1.5%), F1-score of 81.5% (±1.5%), AUC of 

0.89 (±1.1%), and MCC of 0.70 (±1.4%). The low 

standard deviations across these metrics demonstrate 

the model’s stability and reliability, affirming its 

suitability for deployment in real-world clinical 

settings. 

5.4 Comparison with Baseline Models 

Several machine learning classifiers were evaluated 

with and without feature selection for comparative 

analysis in Table 1. 

Table 1: Performance comparison of models with and 

without feature selection. 

Model Acc F1 AUC MCC 

Logistic 

Regression 78.00 73.00 0.81 0.58 

SVM 79.00 74.00 0.82 0.6 

Decision 

Tree 76.00 70.00 0.78 0.55 

Random 

Forest 81.00 77.00 0.85 0.63 

DNN (No 

FS) 81.70 76.30 0.84 0.61 

DNN (RFE) 83.50 78.50 0.87 0.65 

Proposed 

DNN 

(SFLA) 86.40 82.10 0.91 0.72 

 

The results indicate that models without feature 

selection underperformed due to overfitting and noise, 

while traditional feature selection (e.g., RFE) provided 

moderate gains. The SFLA-based approach offered the 

highest improvement, confirming the importance of 

optimised feature reduction. 

5.5 Ablation and Statistical Significance 

An ablation study was conducted to isolate the impact 

of each model component. The absence of SFLA, 

attention mechanism, or Bayesian tuning resulted in a 

performance drop of 2–4%. Statistical significance 

was validated using McNemar’s and Wilcoxon 

signed-rank tests (p < 0.05), confirming the superiority 

of the proposed configuration over all baselines. The 

integration of optimised feature selection, regularised 

deep learning, and explainable AI techniques 

significantly enhances both the accuracy and 

interpretability of diabetes prediction models. The 

proposed framework thus serves as a viable foundation 

for clinical decision-support systems. 

6. Discussion 
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The experimental results demonstrate that the 

proposed hybrid framework, integrating Shuffled Frog 

Leaping Algorithm (SFLA)-based feature selection 

with a deep neural network (DNN), significantly 

enhances diabetes prediction accuracy, model 

generalisation, and interpretability. The accuracy of 

86.4%, F1-score of 82.1%, and AUC of 0.91 achieved 

by the model represent a notable improvement over 

conventional machine learning models such as logistic 

regression, SVM, and random forest. This 

performance gain can be attributed to the selective 

elimination of irrelevant or redundant features by the 

improved SFLA, which reduces noise and allows the 

DNN to focus on clinically meaningful inputs. The 

primary advantage of this hybrid approach lies in its 

synergy between intelligent feature reduction and the 

representational power of deep learning. While DNNs 

are highly capable of modelling non-linear 

relationships, their effectiveness is often compromised 

in the presence of noisy or high-dimensional data. By 

integrating SFLA, the model benefits from enhanced 

convergence and reduced training complexity, 

resulting in both faster computation and more accurate 

outcomes. 

Additionally, the incorporation of dropout, attention 

mechanisms, and Bayesian hyperparameter tuning 

helps mitigate overfitting and improves model 

robustness. The use of SHAP for explainability further 

supports clinical adoption by offering insights into 

feature influence at both global and local levels. 

Despite these advantages, the model incurs a higher 

computational cost during the feature selection and 

tuning phases. The evolutionary nature of SFLA and 

the iterative nature of Bayesian optimisation demand 

substantial processing time and GPU resources, 

particularly on large datasets. Future work may 

explore lightweight variants or distributed versions to 

improve scalability. 

7. Conclusion and Future Work 

This study presented a hybrid deep learning 

framework that integrates an enhanced Shuffled Frog 

Leaping Algorithm (SFLA) for bio-inspired feature 

selection with a regularised deep neural network 

(DNN) for accurate diabetes prediction. The model 

achieved superior performance across key metrics, 

including 86.4% accuracy, 82.1% F1-score, and 0.91 

AUC, outperforming several baseline classifiers. The 

SFLA-based feature selection effectively reduced 

dimensionality by identifying the most relevant 

clinical attributes, thereby minimising noise and 

improving learning efficiency. Simultaneously, the 

deep neural network, equipped with attention 

mechanisms and dropout regularisation, demonstrated 

strong generalisation capability and robustness to 

overfitting. The results validate the effectiveness of 

combining bio-inspired optimisation with deep 

learning in predictive healthcare applications. The 

compact feature set, improved accuracy, and reduced 

training complexity make the framework suitable for 

integration into clinical decision-support systems, 

particularly in resource-constrained settings. Future 

research will focus on deploying this model in real-

time mobile health (mHealth) applications, 

incorporating federated learning for secure, privacy-

aware model training across distributed health 

institutions, and evaluating the framework on 

longitudinal, multi-institutional datasets to ensure 

scalability and generalisability in real-world 

healthcare environments.. 
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