ISSN: 2321-1156	www.ijirts.org	Volume 12 Issue 2, March 2024
A Comprehensive A	Analysis of Bajrang	g Intersection (NH-46 and
NH-146), India: A	Proposal to Enhan	nce Intersection Efficiency

Abdul Arham Khan, Pradeep Purohit, Rakesh Mehar Department of Civil Engineering, SATI Vidisha, India

Selection and peer review of this article are under the responsibility of the scientific committee of the International Conference on Current Trends in Engineering, Science, and Management (ICCSTEM-2024) at SAM Global University, Bhopal.

Abstract: Intersection development involves planning and design to ensure safe and efficient traffic flow while enhancing safety and considering environmental and community factors. This research proposes the improvement of the existing Bajrang intersection located at the junction of Bhopal Bypass (NH-46) and Bhopal-Raisen Road (NH-146) in the Kokta area of Madhya Pradesh, India. The Bajrang intersection is a designated black spot notorious for its unsafe conditions for crossing and driving, resulting in accidents and subsequent human and financial losses. Therefore, it is imperative to enhance and redesign it to facilitate safe and easy crossing and manoeuvres. Options for improvement have been proposed. Heavy commercial traffic utilizes NH-46, while NH-146 caters to a large number of private vehicles, with the area also surrounded by numerous educational institutions generating significant college bus traffic. The proposed methodology is based on an inventory (preliminary) survey and adheres to IRC codes. The inventory survey collected data on the existing road, and the best suitable options per IRC recommendations have been proposed accordingly. The outcomes of this research indicate that the newly proposed grade-separated intersections will reduce accidents, increase capacity, accommodate future demands, and enhance the Level of Service (LOS). The improved proposal ensures greater safety compared to the existing intersection, with the design speed of vehicles increasing from 20-30 Km/h to 60-80 Km/h. These improvements, such as Vehicle Operation Cost (VOC), will reduce human and financial losses.

Keywords: Intersection, Accident, Congestion, At-grade, Grade separated, Design Speed

1. INTRODUCTION

A well-planned road network is crucial for the balanced development of any country. In India, recent economic growth highlights the vital role transportation plays. A robust road network is a backbone for steady growth for developing nations, requiring good links between villages and market centres. Economic prosperity is not accurately reflected by urban areas alone. Sufficient transport facilities between villages, district headquarters, and commercial centres are necessary for economic progress. Expressways are essential to support fast vehicle movement along roads. Developing arterial countries must enhance the length and quality of their transportation systems to meet growing demands. Present highways in India, initially upgraded from pre-automobile local roads, lack geometric design elements suitable for modern automobile traffic. Many national highways face single-lane carriageways, narrow bridges, sharp curves, zig-zags, steep gradients, and inadequate

	ISSN:	2321-1	1156
--	-------	--------	------

www.ijirts.org Volume 12 Issue 2, March 2024

sight distances. Urgent rectification is required, especially for important roads like National and State Highways. Liberal values of geometric design parameters should be considered where favourable conditions and reasonable costs permit.

2. SELECTION OF STUDY AREA

Bhopal, the capital of Madhya Pradesh, is renowned as the City of Lakes and among India's greenest cities. With a robust economy driven by large and medium industries, it holds a significant position in Madhya Pradesh's financial landscape. Bhopal was selected for development under PM Narendra Modi's Smart Cities Mission. The proposed research focuses on the "Bajrang Chouraha" intersection, situated at the crossing of Bhopal-Raisen Road (NH-46) and Bhopal Ring Road (NH-146). This area, marked by colleges, RTO (Bhopal), residential societies, and catering to heavy commercial vehicles, faces traffic challenges. The study identifies issues and suggests a grade-separated option to replace the existing at-grade intersection.

Figure 1. Map showing Project Area

ISSN: 2321-1156	www.ijirts.org	Volume 12 Issue 2, March 2024
3. IDENTIFIED PROBLEMS	IN THE	interviews and analysis of accident records. Based
PROJECT AREA		on the interviews and literature surveys, two
An at-grade road intersection, wh	ere multiple	problems have been identified at the project
roads meet at the same level, p	oses various	intersection: accidents and congestion. Accident
challenges for road users. The Bajra	ng Square in	records obtained from Bilkhiriya Police Station
Kokta, currently an at-grade inters	section, faces	reveal that the project area experienced 84
issues identified through roadside in	terviews and	reported accidents, primarily attributed to the

accident records from the local police station. The geometry of the intersection is inadequate for the present traffic volume and does not align with IRC Problem recommendations. identification roadside methods include

high movement of college/school buses and the proximity of the RTO office. Notably, 22 fatalities occurred, constituting 26% of the total accidents. The at-grade intersection in question has 32 conflict points.

Month		Tun	Bilkhiriya Police Station Accident Record for the year 2023						
Month	Type of Accidents Number of Fatal GI MI NI Total Fatal Grieyo Injury		Grieyous Injured	Minor Injured	Total				
January	2	1	2	2	7	2	1	2	5
February	1	5	1	1	8	1	5	1	7
March	1	1	3	1	6	1	1	3	5
April	1	0	1	0	2	1	0	1	2
May	3	0	8	1	12	3	0	8	11
June	5	0	7	3	15	5	0	7	12
July	3	0	5	2	10	3	0	5	8
August	1	1	2	0	4	1	1	2	4
September	2	0	2	1	5	2	0	2	4
October	0	3	1	1	5	0	3	1	4
November	1	2	3	0	6	1	2	3	6
December	2	0	2	0	4	2	0	2	4
TOTAL	22	13	37	12	84	22	13	37	72

Figure 2. Accidental Data obtained from Bilkhiriya Police Station

Figure 3. Depiction of 32 Conflict Points on the Project Intersection

ISSN: 2321-1156 www.ijirts.org Volume 12 Issue 2, March 2024

Another significant issue observed is congestion caused by a substantial number of commercial vehicles passing through the project intersection, leading to a complete traffic standstill. According to IRC: SP:84-2014, the Level of Service (LOS) for Plain and Rolling terrain for a 4-lane highway is specified as 40,000-60,000 vehicles per day.

Table 1. LOS as per Design Service Volume in PCU per Day (IRC: SP:84-2014)

Tomoin	Design Service Volume in PCU Per Day				
renam	Level of Service 'B'	Level of Service 'C'			
Plain and Rolling	40,000	60,000			
Mountainous and Steep	20,000	30,000			

Figure 4. Congestion on the project area

Figure 5. Vehicle Classification Based on Category

ISSN:	2321-1156 www.iji	irts.org	Volun	ne 12 Issue	2, March	n 2024
	Table 2. Turning Movement C	ount for Morn	ing and Eve	ening Peak H	ours	
	Type of Vehicle	TMC (Morning Peak Hour)		TMC (Even Hou		
		Number	PCU	Number	PCU	
	2 Wheelers	1001	501	851	426	
	Auto Rickshaw	0	0	0	0	
	Car / Jeep / Van	1130	1130	966	966	
	Mini Bus	0	0	0	0	
	Bus	259	777	222	666	
	LCV	357	536	302	453	
	2 Axle	296	888	241	723	
	3 Axle	213	639	175	525	
	MAV (4-6 Axle)	190	855	160	720	
	Tractor with Trailer	3	14	0	0	
	Tractor	6	9	5	8	
	Total Fast Moving	3455	5348	2922	4486	
	Cycle	0	0	0	0	
	Cycle Rickshaw	0	0	0	0	
	Bullock Cart	0	0	0	0	
	Horse-drawn	0	0	0	0	
	Hand Cart	0	0	0	0	
	Other	2	6	3	9	
	Total Slow Moving	2	6	3	9	
	Total ADT	3457	5354	2925	4495	

Figure 6. Turning Movement Count at Bajrang intersection for Morning Peak Hours

Figure 7. Turning Movement Count at Bajrang intersection for Evening Peak Hours

ISSN: 2321-1156

Volume 12 Issue 2, March 2024

Table 3. Percentage of Directional Distribution for Morning and Evening Peak Hours

www.ijirts.org

Origion and Destination	Movement Percentage	Origion and Destination	Movem ent Percentage
Bhopal to Raisen	16%	Bhopal to Raisen	18%
Raisen to Bhopal	13%	Raisen to Bhopal	13%
Bhopal to Vidisha	7%	Bhopal to Vidisha	8%
Vidisha to Bhopal	6%	Vidisha to Bhopal	5%
Bhopal to Misrod	4%	Bhopal to Misrod	4%
Misrod to Bhopal	3%	Misrod to Bhopal	3%
Vidisha to Raisen	7%	Vidisha to Raisen	6%
Raisen to Vidisha	8%	Raisen to Vidisha	8%
Vidisha to Misrod	12%	Vidisha to Misrod	12%
Misrod to Vidisha	14%	Misrod to Vidisha	13%
Raisen to Misrod	6%	Raisen to Misrod	6%
Misrod to Raisen	5%	Misrod to Raisen	4%

Table 4. Traffic Projection for 20 Years Design Life

S. No.	YEAR	Total in Vehicles/Hr	Total in PCU/Hr	Total in PCU/Day	LOS Category	Remark
1	2023	3457	5354	53535	В	
2	2024	3629	5621	56210	В	Construction Daried
3	2025	3810	5902	59020	В	Construction Period
4	2026	4000	6197	61970	С	
5	2027	4200	6506	65060	С	(Open for Traffic) 1
6	2028	4410	6831	68310	С	2
7	2029	4630	7172	71720	С	3
8	2030	4861	7530	75300	С	4
9	2031	5104	7906	79060	С	5
10	2032	5359	8301	83010	D	6
11	2033	5626	8716	87160	D	7
12	2034	5907	9151	91510	D	8
13	2035	6202	9608	96080	D	9
14	2036	6512	10088	100880	$\mathbf E$	10
15	2037	6837	10592	105920	\mathbf{E}	11
16	2038	7178	11121	111210	${ m E}$	12
17	2039	7536	11677	116770	\mathbf{E}	13
18	2040	7912	12260	122600	\mathbf{E}	14
19	2041	8307	12873	128730	${ m E}$	15
20	2042	8722	13516	135160	F	16
21	2043	9158	14191	141910	F	17
22	2044	9615	14900	149000	F	18
23	2045	10095	15645	156450	F	19
24	2046	10599	16427	164270	F	20

ISSN: 2321-1156	www.ijirts.org	Volume 12 Issue 2, March	2024
The current Level of Service (I	LOS) of the a 20-	year design period as per IRC 84:201	4), it is
Bajrang Intersection road is 'B'.	Considering antic	ipated that the LOS may deteriorate	to 'F'.
future traffic growth projected for 20	046 (following		

Figure 8. Proposed Plan for Vehicle Underpass

4. SUGGESTED IMPROVEMENT

After analyzing the survey data, it is recommended that the most suitable and costeffective solution for enhancing the Bajrang intersection is to implement grade separation by constructing a Vehicle Underpass. The design specifications for the Vehicle Underpass are outlined as follows:

1. As per IRC:84-2014 "Guidelines for the Design of Interchanges in Urban Areas," the design specifications for the vehicle underpass have been established.

- 2. NH-146 is designated as the priority road within the interchange.
- 3. All left turns at the intersection are unrestricted.
- 4. Ramps are provided to facilitate right turns for vehicles.
- 5. The design speed for the Major highway is set at 80 km/h, with a reduction to 40-60 km/h due to Entry and Exit on Approaches.
- The Stopping Sight Distance is established at 45 meters.

www.ijirts.org

ISSN:	2321 - 1156

specified as 5.5 meters.

Volume 12 Issue 2, March 2024

Figure 9. Modelling and Simulation of the proposed options have been done with the help of SketchUp software for better understanding and visualization.

5. IMPROVEMENT ANALYSIS

The Improvement Analysis for the Bajrang Intersection, outlined in Table 5, reveals significant enhancements anticipated following the proposed improvements. Firstly, transitioning from the existing four lanes with paved shoulders to a more optimized setup promises to streamline traffic flow and enhance efficiency. Adjusting the lane width to 8.5 meters ensures better vehicle accommodation, facilitating smoother movement within the intersection. A notable reduction in conflict points, from 32 to just 8, is expected to enhance safety significantly, minimizing the risk of accidents and improving overall traffic management. Moreover, with a remarkable increase in design speed from 20-30 Km/h to a more efficient range of 60-80 Km/h, the intersection is poised to facilitate faster and more vehicle seamless transit. Anticipated improvements from Level D to Level B-C signify a substantial upgrade in the intersection's operational performance and efficiency. Transitioning from poor road geometry to good geometry ensures smoother traffic flow, reducing the likelihood of bottlenecks and congestion. Introducing 900 meters of approaches enhances accessibility and manoeuvrability, further optimizing $\operatorname{traffic}$ movement within the intersection. Two ramps provide better vehicle access and egress, improving traffic flow and safety. The proposed elimination of head-on collisions is expected to significantly reduce

ISSN: 2321-1156 www.ijirts.	org Volume	12	Issue	2,	March	202	24
-----------------------------	------------	----	-------	----	-------	-----	----

accident severity, ensuring minor incidents instead of fatal ones, thereby enhancing overall safety. While the current capacity reaches its limit during peak hours. the proposed improvements are projected to delay congestion, with the onset expected five years after the opening for traffic, allowing for sustained operational efficiency. Although large trailers may still cause congestion when making right turns onto the Vehicle Underpass (VUP), overall congestion is anticipated to be mitigated significantly through the proposed enhancements. Ensuring a right of way of 60 meters provides sufficient space for safe and efficient traffic movement within the intersection. Additionally, a vertical clearance of 5.5 meters accommodates taller vehicles, ensuring unimpeded passage and minimizing disruptions. With a minimum turning radius of less than 20 meters, the intersection can accommodate vehicles of varying sizes and facilitate smoother turns, enhancing overall traffic flow.

S. No.	Description	Before Improvement	After Improvement
1	Lane Configuration		Four lanes with Paved Shoulder
2	Lane Width		8.5 + 5 + 8.5
3	Conflict Points	32	8
4	Design Speed	20-30 Km/h	60-80 Km/h
5	Level of Service	D	B-C
6	Road Geometry	Poor	Good
7	Length of Approaches	-	900 m
8	No. of Ramps	-	2
9	Severity of Accidents	Fatal due to head-on collisions	Minor, as the chance of head-on collisions will be eliminated
10	Capacity	Reaches its capacity during the Peak Hours	Congestion will start after five years of opening for traffic
11	Traffic Congestion	Yes	Large trailers can cause congestion when taking a right turn to get onto the VUP.
12	Right of Way (R.O.W.)		60 m
13	Vertical Clearance		5.5 m
14	Min. Turning Radius		<20 m

Table 5. Im	provement	Analysis	for I	Rairang	Intersection
Table 5. Im	provement	Analysis	IOI I	Dajrang	Intersection

6. COST ESTIMATION

The necessity for grade separation has been identified in the Cost Estimation for enhancing the existing Bajrang Intersection, situated in plain terrain. We adhere to the guidelines in the Ministry of Road Transport and Highways (MoRTH) Letter no. RW/NH-24036/27/2010-PPP, dated 25/04/2018, with a specific focus on flexible pavement, a normative cost analysis for the improved alignment has been conducted. The breakdown of the cost analysis for the enhanced alignment is based on Table 6. The Vehicular Underpass project, covering a span of 0.900 km for the main carriageway, is estimated to cost 7.00 Cr. The necessary approaches and retaining wall installation, spanning 0.900 km, incur an estimated cost of 10.00 Cr.

ISSN: 2321-1156	www.ijirts.org	g Volume 12 Issue 2, March 2024
Furthermore, the construction of	the service	been set aside for miscellaneous works, including
road, extending over 1.720 km,	requires an	safety measures and aesthetic enhancements. The
allocation of 4.90 Cr. While the in	nstallation of	total civil cost is estimated at 39.675 Cr., with
ramps is not applicable, the	e structure,	pre-construction activities requiring an
comprising two 20-meter spans, ne	cessitates an	investment of 3.97 Cr. Consequently, the Total
estimated investment of 5.90 Cr.	Additionally,	Cost for the proposed enhancement stands at
the construction of drains, spann	ing 6.9 km,	43.645 Cr.

	F		5	-1	
S. No.	Description	Unit	Vehicular Underpass	Amount in Cr	
1	Length of Main	km	0.900	7.00 Cr	
	Carriageway				
2	Length of Approaches with	km	0.000	$10.00 \mathrm{Cr}$	
	RE Wall	KIII	0.300		
3	Length of Service Road	km	1.720	4.90 Cr	
4	Length of Ramps	km	-	-	
5	Length of Structure	km	$2 \mathrm{x} 20 \mathrm{m}$ span	$5.90~\mathrm{Cr}$	
	Length of Metal Beam				
6	Crash	Km	-	-	
	Barrier				
7	Length of Drains	km	6.9	$6.7~\mathrm{Cr}$	
0	Misc. Work (Safety Works,	Cr		5.175 Cr	
0	Paintworks, etc.)	Cr	-		
	Civil Cost	Cr		30.675	
9	Civil Cost	UI	-	59.075	
10	Pre-Construction Cost	Cr	-	3.97	
	Total Cost	Cr		43.645	

Table 6. Proposed Preliminary Cost for Vehicle Underpass

7. BENEFITS AFTER IMPROVEMENT

The benefits anticipated after the improvement of the Bajrang Intersection, as outlined in this research study, are as follows:

amounts to 6.7 Cr. An allocation of 5.175 Cr. has

- 1. Increased Design Speed: The upgraded intersection will facilitate a design speed exceeding 60 kmph, enabling smoother and faster traffic flow for road users.
- 2. Enhanced Safety: With the implementation of improvements, the intersection will become safer for all road users, significantly reducing

the likelihood of accidents and improving overall safety conditions.

- 3. Reduced Delay Time: The time delays caused by the slow speed of commercial vehicles at the intersection will be minimized, leading to improved efficiency and reduced congestion for motorists.
- 4. Elimination of Accident-Prone Area: Addressing existing deficiencies and upgrading safety measures will eliminate the intersection's status as an accident-prone area, resulting in fewer accidents and enhanced road safety.

ISSN: 2321-1156	www.ijirts.org	Volume 12 Issue 2, March 2024

5. Improved Level of Service (LOS): The Level of Service (LOS) at the intersection will be upgraded to B-C, indicating a significant enhancement in operational efficiency and traffic flow, providing a better experience for road users.

8. CONCLUSION

In conclusion, the research study, titled "A Comprehensive Analysis of Bajrang Intersection (NH-46 & NH-146), India: A Proposal to Enhance Intersection Efficiency," meticulously follows the guidelines and recommendations established by the Indian Roads Congress (IRC). The proposed solution aims to enhance the intersection's efficiency by introducing a Vehicle Underpass to segregate traffic flow across all four legs, focusing on addressing NH-46 (Bhopal Bypass Road). The horizontal alignment and vertical profile design have been considered factors. All proposed improvements crucial adhere strictly to IRC recommendations, ensuring compliance with industry standards. The design incorporates desirable minimum radii for a Full Cloverleaf interchange, enhancing safety and efficiency, while ruling gradient values have been meticulously applied to optimize road usability. Careful formulation of design speeds accommodates a ruling Design Speed of 60 kmph, ensuring smooth traffic flow. The proposed alignments are geared towards reducing accident rates, minimizing delay times, and enhancing the safe design speed for road users. Anticipated enhancements to the existing alignment are poised to result in notable reductions in both human and economic losses associated with accidents.

Moreover, a reduced travel time at the intersection is projected, alongside decreased Vehicle Operating Costs (VOC) for motorists, enhancing overall efficiency. Improved infrastructure will facilitate easier and faster goods transport, contributing to enhanced efficiency within product supply chains. The proposed Vehicle Underpass, estimated at Rs. 43.645 Cr, has been meticulously planned following the research study and is designed to cater to future traffic demands while remaining economically viable for a 20-year design life.

REFERENCES

- Highway Engineering by S.K Khanna 2017, C.E.G. Justo & A, Veeraragavan
- [2]. [IRC SP 84-2014 "Manual of Specification and Standards for Four Laning of Highways"
- [3]. IRC SP 90-2010 "Manual for Grade Separators and Elevated Structures".
- [4]. IRC 108-1983 "Design of Vertical Curves for Highway". Indian Road Congress, New Delhi, 1983.
- [5]. IRC SP 92-2017 "Guidelines for the Design of Interchanges in Urban Areas".
- [6]. IRC 54-1974 "Lateral and Vertical Clearances at Underpasses for Vehicular Traffic".
- [7]. IRC 64-1990 "Guidelines for Capacity of Roads in Rural Areas".
- [8]. IRC SP 41-1994 "Guidelines for Design of At-Grade Intersections in Urban and Rural Areas".
- [9]. Ministry of Road Transport and Highways (MoRTH) Letter no. RW/NH-24036/27/2010-PPP, Dated 25/04/2018
- [10]. Highway Engineering by Martin Rogers and Bernard Enright, 3rd edition (3 May 2016)
- [11]. Muneeb Abid, Malik & Tariq, M & Riaz, Mamoon & Khan, Nisar Ali & Haroon, Waqas. (2017). Overview of Different Types of Road Interchanges. Garber, N. J., &

	International Journ	nal of Innovative	e Res	search in Technology and Science
ISS	N: 2321-1156	www.ijirts.org)	Volume 12 Issue 2, March 2024
	Fontaine, M. D. (1999). preliminary selection of	Guidelines for the optimum	[20].	Saleh, S. M., Sugiarto, S., Hilal, A., & Ariansyah, D. (2017, November). A study
[12].	interchange type for a specifi NamGung, H., Kim, C., Ch Kim, Y., & Ri, M. P. (2	ic location. noe, K., Ri, C., 2020). Research		on the traffic impact of the road corridors due to flyover construction at Surabaya intersection, Banda Aceh of Indonesia. In
	Progress of Road Inters Analysis. International Jour	section Design nal of Scientific		AIP Conference Proceedings (Vol. 1903, No. 1). AIP Publishing.
	Research in Science, En Technology, 7(6), 245-256.	ngineering and	[21].	Chowdhury, T. U., Raihan, S. M., Fahim, A., & Bhuiyan, M. A. (2016, April). A case
[13].	Yulianto, B. (2020, - management and engineeri the Manahan flyover area	July). Traffic ng analysis of a using traffic		study on reduction of traffic congestion of Dhaka City: Banani Intersection. In International Conference on Agricultural.
	micro-simulation VISSIM Conference Series: Materia	I. In IOP ls Science and		Civil and Environmental Engineering (ACEE-16) (pp. 61-65).
	Engineering (Vol. 852, No. IOP Publishing.	1, p. 012005).	[22].	Salatoom, N., & Taneerananon, P. (2015). A study of the flyover-bridge intersection-
[14].	Ghorpade, K., & Patil, G. Analysis in Flyover	L. (2019). Risk Construction.	[]	improved junction. Engineering Journal, 19(1), 1-12.
[1]	Development and Research, ¹	of Scientific $7(6), 245-256.$	[23].	Mudiono, R. (2015, February). Research of Flyover as a Solution to Congestion of
[15].	Planning, Designing And Flyover Road Using Auto Software Planning 5(08) 16	Proposing A ocad Civil 3D		Jatingaleh Semarang. In International Conference on Coastal and Delta Areas
[16].	Veer, S. P., Gupte, S., & (2018). A Review of	Juremalani, J. Literature on	[24].	(vol. 1, No. 1, pp. 220-257). Leisch, J. P., & Morrall, J. (2014). Evolution of interchange design in North
	Geometric Design of Highwa Research Journal of En Tachnology (IB IET) Volume	y. International gineering and	[25].	America. Transportation. Taleb, A., Majumder, S., & Rimon, M. R.
[17].	Kori, K., & Purohit, P. (20 Behaviour & Critical Issues	9, 5(1). 18). Pedestrian 5 on Nh-146 in		of Bangladesh: A Study on the Affected People in the Adjacent Areas. Manarat Int.
[18].	Mishra, A., & Purohit, P. (And Design of Pedestrian I	2018). Analysis Level of Service	[26].	 Univ. Stud, 2(1), 119-125. Stamatiadis, N., Kirk, A., Agarwal, N., & Jones, C. (2011). Improving intersection
[19].	Harris, A. (2018). Enginee	ering formality:	[27].	Maitra, B., Azmi, M., Kumar, N., &

- flyover and skywalk construction in Mumbai. International Journal of Urban and Regional Research, 42(2), 295-314.
- [27]. Maitra, B., Azmi, M., Kumar, N., & Sarkar, J. R. (2004). Modelling traffic impact of flyover at an urban intersection under mixed traffic environment.