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Abstract  
 

In soft object modeling, soft objects are defined as a level 

surface of field functions, and a complex object can be con-

nected smoothly through Boolean set blends. Because field 

functions are required to decrease to zero within the influen-

tial radius, union of soft objects is obtained easily by per-

forming sum operation only, called soft blend. Besides, field 

functions with adjustable influential radii were also devel-

oped to adjust the size of the resulting set blends. However, 

the level surfaces of existing field functions always have 

similar shapes and sizes like the shape and size of soft object. 

As a result, unwanted blends and unnecessary bulges could 

be generated. To solve these problems, this paper proposes 

field functions with surface-defined influential radii, that is, 

it allow freely choosing implicit surfaces to define its inner 

and outer influential radii with any shapes. Thus, unwanted 

blend is removed by assigning blended primitives influential 

radii which does not contain the regions where unwanted 

blends lie; unnecessary bulge is avoided by assigning blend-

ed primitives influential radii which do not contain the re-

gion where unwanted bulges are located. 

 

1. Introduction 
 

 In soft object modeling, primitive soft objects are defined 

as a 0.5 level-surface of field functions [1, 2, 3]. In order to 

create a more complex object, primitive soft objects, such as 

planes, super-ellipsoids, sweep surfaces, cylinders etc., can 

be connected smoothly through an automatically generated 

added or subtracted transition surface by Boolean set blends 

(union, intersection and difference). In the literature, boolean 

set blends include super-elliptical blends [4], blends with 

blending range parameters [5, 6] and blends of high-order 

smoothness [7]. Besides, sequential blends, i.e. a blend in 

blend, with affine-transformation are allowed and represent-

ed by a CSG (Constructive solid geometry) tree [8]. 
 

A field function is defined by a composition of a potential 

function and a distance function. Distance function [3, 9-14] 

determines the shape of a soft object. Potential function [1, 2, 

11] enables the value of field function to decrease to zero in 

the influential radius and is zero outside the influential radi-

us, and hence union of soft objects can be obtained by per-

forming sum operation only, called soft blend [3] or by 

product operations only, called Perlin’s boolean set blends 

[15]. To offer these two families of blends more shape con-

trols, some filed functions were also developed. Field func-

tions in [1] offer a softness parameter to adjust a transition’s 

curvature; field functions [16, 17] offer blend range control 

by offering an inner and an outer radius parameters to adjust 

the inner and the outer influential radii of a field function 

through a transform of distance function. Locally restricted 

blends [16] allows each primitive to locally have different 

influential radii, like blend range, with the others by using a 

deformation function of field function and a graph of influ-

ential weights on one another. 

 

In fact, field function in [16] adjusts all the inner or the 

outer radii in all directions with the same parameter value, so 

the shapes of level surfaces of a field function are all similar. 

On the contrary, this paper develops field functions with 

surface-defined influential radii, which extends field func-

tion with adjustable influential radii [16] by adding a freely 

chosen modulation surface in any shape. By using every 

influential radius of the modulation surface to individually 

vary the outer radius or the inner radius parameter in every 

direction, the shapes of the level surfaces of the proposed 

field function in added-material blend region or in subtract-

ed-material blend region vary gradually from the primitive’s 

shape to the chosen modulation surface. Thus, if soft objects 

are defined using the proposed field functions, soft blend 

and Perlin’s and Ricci’s set blends have the following appli-

cations by choosing suitable modulation surface: 

⚫ Application 1: When one primitive generates two blends 

at different places with other primitives, one can remove 

one blend but keep the other unchanged by choosing a 

modulation surface to obtain a new added-material blend 

region without including the region where the unwanted 

blend lies. 

⚫ Application 2: Bulges are eliminated in a union of inter-

secting and connecting super-elliptic cylinders and super-

toroids by choosing modulation surfaces such that their 

added-material blend regions do not overlap where the 

unwanted bulge lies, even though these blends do not 

have range parameters to do bulge elimination by gradi-

ent-based methods [6, 18,19]. 
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The remainder of this paper is organized as follows: Sec-

tion 2 reviews implicit surfaces. Section 3 reviews soft ob-

ject modeling and existing field functions. Section 4 presents 

field functions with surface-defined influential radii to solve 

the problems stated in Section 3. Section 5 demonstrates the 

applications of the proposed field functions. Conclusion is 

given in Section 6 

 

2.  Implicit surface modeling  

2.1. Primitive implicit surface 
 

In implicit surface modeling, an primitive implicit surface 

is represented as a level surface of a defining function 

fi(x,y,z) :R3→R by :   

{(x,y,z) R3 | fi(x,y,z)=C}, 

where C is set a constant 0, 0.5 or 1. However, if the surface 

is viewed as an solid, it is redefined by a half space: 

{(x,y,z)R3 |fi(x,y,z)C} or {(x,y,z) R3 | fi(x,y,z)C}. 

In the literature, according to the value of C, implicit 

surface modeling techniques have three categories: 

⚫ Zero implicit surface [19, 20, 21]: 

{(x,y,z)R3 |fi(x,y,z)0}, {(x,y,z)R3 |fi(x,y,z)0} or 

{(x,y,z)R3 |fi(x,y,z)=0}, 

whose compliment is {(x,y,z)R3 |-fi(x,y,z)0}or -fi(x,y,z)0} 

⚫ Constructive geometry [4, 6]: 

{(x,y,z)R3 |fi(x,y,z)1} or {(x,y,z)R3 |fi(x,y,z)=1}, 

whose compliment is {(x,y,z)R3 |1/fi(x,y,z)1}. 

⚫ Soft object modeling [2, 5, 6, 6, 15, 18, 22]: 

{(x,y,z)R3 |fi(x,y,z)0.5} or {(x,y,z)R3 |fi(x,y,z)=0.5}. 

whose compliment is {(x,y,z)R3 |1-fi(x,y,z)0.5}. 

 

In the following, a surface is denoted by fi(x,y,z)=C, and a 

soft object by fi(x,y,z)=0.5 

 

2.2. Implicit blends 
 

Furthermore, based on a blending operator Bk(x1,...,xk): 

Rk→R, a more complex implicit surface is constructed from 

k primitive implicit surfaces fi(x,y,z)=C, i=1,...,k, and is de-

fined using a blend Bk(f1,...,fk) by 

Bk(f1(x,y,z),...,fk(x,y,z))=C  or 

{(x,y,z)R3 | Bk(f1(x,y,z),...,fk(x,y,z)) or C}, 

where Bk(f1,...,fk)=C is called a blending surface. A blend 

connects primitive implicit surfaces smoothly by automati-

cally generated added or subtracted transition surface which 

is tangent to blended primitives for eliminating sharp edges. 

Functionally, Bk(f1,...,fk)=C has three kinds denoted as fol-

lows: (a). Union: BUk(f1,...,fk)=C, (b). Intersection: 

BIk(f1,...,fk)=C, and (c). Difference of f1 from f2,..., and fk: 

BDk(f1, f2, ...,fk)=C as shown in Figure 1, which defines a 

wheel by sequential blends, depicted as a CSG tree. 

3. Soft object modeling 
 

3.1. Definition of soft objects and their blends 
 

A primitive soft object is defined using a field function as 

a defining function by  

                 fi(x,y,z)=(P。d)(x,y,z) =P(d(x,y,z))=0.5,             (1) 

where d(x,y,z):R3→R+ is called distance function and 

P(d):R+→[0,1] is called potential function. 

 

3.1.1. Distance function 

 

A distance function d(x,y,z) can be one of the structures: a 

point skeleton or 1D-3D skeletons [13]. As shown in Fig. 2, 

it is defined by  

r/Id = /  

where r=(x2+y2+z2)0.5 is the short distance from p(x,y,z) to 

the skeleton and Id is the influential radius specifying that 

the value of (P。d)(x,y,z) is zero if r  Id. Id can be viewed 

as the distance from the point o on the skeleton where r is 

calculated to the surface d(x,y,z)=1 along the direction from 

o to p. In fact, a ray-linear f(x,y,z) can be used as a distance 

function d(x,y,z) because it can be reformulated as r/If. Exist-

ing distance functions include parallel planes, one-branch 

   

Figure 1. Wheel defined by f(x,y,z)=BD2(BU2(BU2(f1,f2),f3),f4)=C 

and depicted as a CSG tree.  
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plane [14], super-ellipsoids [3, 11], super-quadrics [23], gen-

eralized distance functions [10], skeletal primitives [12], 

sweep objects [13] and spherical product functions [14]. 

3.1.2. Potential function 

 

Potential function P(d) is required to decreasing from 1 to 

0 as d increases from 0 to 1 and satisfies the requirements 

P(0)=1, P(0.5)=0.5, P’(0)=0, P’(1)=0 and P(d)=0 for d1, all 

of which can be seen in Blanc’s function p=Pb(d) [1]  writ-

ten below: 

Pb(d)=

1

15.0

5.0

0

))45.1(75.0/()1(

))45.4(/()3(1
222

222
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     (2) 

where s is softness parameter.  

 

The purposes of the requirements above are explained as 

below: 

⚫ P(0.5)=0.5 ensures that the shape of P(d(x,y,z))=0.5 is 

the same as d(x,y,z)=0.5 as in Figure 2. This tells that dis-

tance function determines the shape of a soft object. 

⚫ P(0)=1, P(0.5)=0.5 and P(d)=0 for d1 ensures that the 

value of P(d(x,y,z)) drops gradully to zero and is always 

zero when the value of r exceeds the influential radius Id. 

⚫ Decreasing P(d), P’(0)=0 and P’(1)=0.  

Because of these requirements, primitive soft objects 

P(d(x,y,z))=0.5, i=1,...,k, can be blended easily by sum and 

product operations only such as the blends below: 

(a). Soft blend [2, 11]:              

Union:        BSUk(f1,…,fk) =f1(x,y,z)+...+fk(x,y,z)=0.5.          (3) 

(b). Perlin’ set blends [15]: 

Union:         BPUk(f1,...,fk) =1-(1-f1)*(1-f2)*(1-fk)=0.5;         (4) 

Intersection:         BPIk(f1,...,fk) = f1*f2*...*fk =0.5;                (5) 

Difference:   BPUk(f1,f2...,fk) =f1*(1-f2)*...*(1-fk)=0.5.           (6) 

In addition, some other blends with special functions on 

soft objects are listed below: 

(a). Super-ellipsoidal blends [21], such as: 

Union:      BRUk(f1,…,fk)=(f1
n+…+fk

n)1/n =0.5.                       (7)                               

Intersection: BRIk(f1,…, fk)= (f1
-n+…+fk

-n)-1/n=0.5.                (8)  

   where n is a curvature paremeter to adjust the curvature of 

the transition surface. 

 

(b). Blends with blending range parameters [4, 15], which 

allow to adjust the size of the transition of a blend by vary-

ing the values of range parameters. These blends combined 

with gradient-based variable blending range [12, 15] can 

also eliminate unnecessary bulges. Figure 3 shows sequen-

tial unions of six intersecting cylinders by BU2(BU2(BU2(BU2 

(BU2(f1,f2),f3),f4)f5),f6)))=0.5 without and with bulge elimina-

tions, respectively. 

3.2. Field functions with adjustable inner 

and outer influential radii 
 

As shown in Figure 2, influential radius Id can be divided 

into inner radius  = Id/2 and outer radius   = Id/2 and the 

inner radius and the outer radius influence the sizes of the 

subtracted-material (intersection) and the added-material 

(union) blending regions, respectively. The length of inner 

and outer radii indicate that a large soft object has a large 

blending region, a small one a small blending region. 

 

To enable the adjustment of the lengths of inner and outer 

influential radii, field functions with adjustable inner and 

outer influential radii were proposed in [6, 17] and one of 

them is introduced as follows: 

                fi(x,y,z) =(P。T*。di)(x,y,z),                            (9) 

where T*(d) is a transform of di(x,y,z), mapping [0.5(1-w2), 

                 
 
Figure 3. Sequential unions of six end-to-end connecting and 

intersecting cylinders defined with and without bulges. 

                
Figure. 2. Influential radius Ir=  of a distance function 

d(x,y,z), an ellipsoid, in x-y plane.  
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0.5] to [0, 0.5] or [0.5, 0.5(1+w1)] to [0.5, 1]. For example, 

T*(d) can be the normalization and affine transform Tn(d) [6] 

given by 

                    

Tn(d)=







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n

,           (10) 

and w22w1, w21 and w1>0; A=2(1/w1-1/w2)/w2, B=1/w1-A, 

C=0.5-0.5B-0.25A. 

 

Thus, if soft objects are defined by (P。Tn。di)(x,y,z)=0.5 , 

then adjusting w2 and w1 enables the inner and the outer radii 

change from   = Id/2 and  = Id/2 to =w2Id/2 and 

=w1Id/2, respectively and so subtracted-material and add-

ed-material blending regions become located  in 0.5(1-

w2)di(x,y,z)0.5 and 0.5di(x,y,z)0.5(1+w1), i=1, …, k, 

respectively, as shown in Figure 4. 

 

3.3. Shapes of the level surfaces of existing 

field functions 
 

When soft objects are defined by (P。T*。di)(x,y,z)=0.5, 

i=1,…,k, in Eq. (9), in soft blend or Ricci’s or Perlin’s set 

blends Bk(f1,…,fk)=0.5 in Eqs. (3)-(8) level surfaces 

di(x,y,z)=l, 0.5(1-w2)l0.5(1+wi), are used to generate the 

transition. Because di(x,y,z) is always ray-linear, level sur-

faces di(x,y,z)=l enlarge proportionally in all directions and 

have similar shapes as l increases. To enable level surfaces 

di(x,y,z)=l of (P。T*。di), 0.5(1-wi2)l0.5(1+wi1), to have 

shapes different from soft object di(x,y,z)=0.5, this paper 

proposes field functions with surface-defined influential 

radii, denoted by (P。Ta*。di) and (P。Ts*。di), which is 

extended from (P。T*。di)(x,y,z) in Eq. (9) by adding a 

freely chosen modulation surface fai(x,y,z)=0.5 or fsi(x,y,z) 

=0.5 in shapes different from the primitives. Thus, as shown 

in Figure 5, by means of modulating the inner or the outer 

influential radius parameter w1 and w2 of T* for every point’s 

calculation through the influential radii 0.5Isi and 0.5Iai 

bounded by fai(x,y,z)=0.5 or fsi(x,y,z)=0.5 in every direction: 

 

(1). The shapes of (P。Ta*。di)(x,y,z)=l for l=0.5 to 0, en-

large gradually from di(x,y,z)=0.5 to fai(x,y,z)=0.5 and its 

added-material blend region becomes {(x,y,z)R3|di(x,y,z) 

0.5  and fai(x,y,z)0.5}. 

 

(2). The shapes of (P。Ts*。di)(x,y,z)=l for l=0.5 to 1 shrink 

gradually from di(x,y,z)=0.5 to fsi(x,y,z)=0.5 and its subtract-

ed-material blend region becomes {(x,y,z)R3|fsi(x,y,z)0.5 

and di(x,y,z)0.5}.  

 

Thus, due to the shape change of the level surfaces in the 

blending region controlled by modulation surfaces, soft 

blend and Perlin’s and Ricci’s set blends on soft object (P。

Ts*。 di)(x,y,z)=0.5 have the following new functions by 

choosing suitable modulation surfaces fai(x,y,z)=0.5 or 

fsi(x,y,z)=0.5: 

 

⚫ Application 1: When one primitive has two blends with 

 
Figure 4. Inner radius =w2Id/2 and outer radius =w1Id/2 

of (P。T*。d)=0.5 of a ellipsoid in x-y plane and its subtract-

ed-material and added-material blending regions bounded 

by new ellipsoids in red and blue lines. 

  
Figure 5. Inner radius =Id/2 and outer radius =w1Id/2 of 

(Pb。Tn。d)=0.5, w1=w2=1, of a ellipsoid in x-y plane become 

=0.5(Id-Isi) and =0.5Iai by varying w1 and w2 of Tn via cho-

sen modulation surfaces sphere fs(x,y,z)=0.5 and super-

ellipsoid fa(x,y,z)=0.5 in red and blue lines. The added-

material blending region of P。Tan。d)=0.5 become bounded 

by d(x,y,z)=0.5 and fa(x,y,z)=0.5. The subtracted-material 

blending region of (P。 Tsn。 d)=0.5 become bounded by 

fs(x,y,z)=0.5 and d(x,y,z)=0.5.  
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other primitives at two places, one can avoid one blend 

unwanted but keep the other unchanged by choosing a 

modulation surface to define a new added-material blend 

region without containing the region where the unwanted 

blend lies. 

 

⚫ Application 2: Bulge elimination for a union of inter-

secting and connecting super-elliptic cylinders and super-

toroids is achieved by choosing modulation surfaces such 

that their union blend regions do not overlap where the 

unwanted bulge lies. 

 

4. Field functions with surface-

defined influential radii  
 

Let T*(d) denotes a transform of distance function di(x,y,z) 

like Tn in Eq. (9). Extended from (P。T*。di)(x,y,z), field 

functions with surface-defined influential radii, denoted by 

(P。Ts*。di)(x,y,z), for union, intersection and difference are 

presented in Sections 4.1-3. 

 

4.1. Field functions with surface-defined outer 

radius for a union blend BUk(f1,…,fk)=0.5 

 

For each primitive fi in BUk, define a field function as de-

scribed below: 

Step 1: Choose a surface fai(x,y,z)=0.5 that satisfy the condi-

tions: (a). fai(x,y,z) is ray-linear, (b). it and di(x,y,z) both has 

the same structure: point, or 1-3D skeleton, and (c). 

di(x,y,z)0.5 is included within fai(x,y,z) 0.5. 

 

Step 2: For making the added-material blending region 

{(x,y,z)R3|fi(x,y,z)0.5 and fi(x,y,z)0} of fi=0.5 become 

{(x,y,z)R3|di(x,y,z)0.5 and fai(x,y,z)0.5}, vary the outer 

radius parameter w1 of fi by replacing fi with (P。Ta*。

di)(x,y,z) written by  

fi =(P。Ta*。di)(x,y,z) ,  i=1,…, or k,                 (11) 

where Ta*(d) is T*(d)  in Eq. (9) with w1= di(x,y,z)/fai(x,y,z)-1, 

(P。Ta*。di)’s new blending region is derived by sub-

stituting di(x,y,z)/fai(x,y,z)-1 for w1 in {(x,y,z) R3|di(x,y,z)  

0.5 and di(x,y,z)0.5(1+w1)} yields {(x,y,z)R| di(x,y,z) 0.5 

and di(x,y,z)0.5(di(x,y,z)/fai(x,y,z)-1+1)}{(x,y,z)R3|di(x,y, 

z)0.5 and fai(x,y,z)0,5}, completing the proof. Prove it 

from influential radii Id and Ifa of di(x,y,z) and fai(x,y,z). Let 

di(x,y,z) be represented by r/Id and fai(x,y,z) by r/Ifa. Then for 

any point (x,y,z) its influential radius is 0.5(1+w1)Id= 

0.5(1+r/Id/r/Ifa-1)Id=0.5(1+Ifa/Id-1)Id=0.5Ifa, bounded by fai(x, 

y, z)=0.5 and so completing the proof. 

 

4.2. Field functions with surface-defined 

inner radius for an intersection blend 

BIk(f1,…,fk) =0.5 
 

For each primitive in BIk, define a field function as de-

scribed below: 

Step 1: Choose a surface fsi(x,y,z)=0.5 that satisfy the condi-

tions: (a). fsi(x,y,z) is ray-linear, (b). it and di(x,y,z) both have 

the same structure, and (c). surface fsi(x,y,z)0.5 is included 

within di(x,y,z)0.5. 

 

Step 2: For making the subtracted-material blending region 

{(x,y,z)R3|fi(x,y,z)0.5 and fi(x,y,z)1} of fi=0.5 become 

{(x,y,z)R3|di(x,y,z)0.5 and fsi(x,y,z)0.5}, vary the outer 

radius parameter w2 of T* in fi by replacing fi with (P。Ts*。

di)(x,y,z) written by 

fi =(P。Ts*。di)(x,y,z) ,  i=1,…, or k,                   (12) 

where Ts*(d)= T*(d)  where  w2 = 1 - di(x,y,z)/fsi(x,y,z) , 

 

(P。Ts*。di)’s new blending region is derived by substi-

tuting 1-di(x,y,z)/fsi(x,y,z) for w2 in {(x,y,z)R3| di(x,y,z)0.5 

and di(x,y,z)0.5(1-w2)} yields {(x,y,z)R|di(x,y,z)0.5 and 

di(x,y,z)0.5(1-(1-di(x,y,z)/fsi(x,y,z)))}  {(x,y,z)R3|di(x,y,z) 

0.5 and fsi(x,y,z)0,5}, completing the proof. Prove it from 

influential radii Id and Ifs the same as in Eq. (11). Then for 

any point (x,y,z) its influential radius is 0.5(1-w2)Id=0.5(1-(1- 

r/Id/r/Ifs))Id=0.5(Ifs/Id)Id=0.5Ifs, bounded by fsi(x,y,z)=0.5 and 

so completing the proof. 

 

For example, Figure 6(a) display a soft object of a elliptic 

cylinder (Pb 。 di)=0.5 and di=(((|x/10|2+(y/6|2)1/2)10+|z/25 

|10)1/10, whose level surfaces (Pb。di)=l, l=0.5, 0.35, 0.15, 

0.01, are always similar as in Figure 6(b). However, if the 

soft object is defined by (Pb。Tan。di)=0.5 in Eq. (11) pos-

sessing fai(x,y,z)=(|x/24|10 +(y/15|10+|z/50|10)1/10 shown in Fig-

ure 6(a) instead, then level surfaces (Pb。Tan。di)=l, l=0.5 

0.35, 0.15, 0.01, enlarge from di(x,y,z)=0.5 to fai(x,y,z)=0.5 as 

in Figure 6(d); if the soft object is defined by (Pb。Ts*。
di)=0.5 in Eq. (12) with fsi(x,y,z)=(((|x/4|2+(y/4|2)1/2)10+|z/ 

12.5|10)1/10 shown in Figure 6(e) instead, then level surfaces 

(Pb。Ts*。di)=l, l=0.5, 0.65, 0.85, 0.99, shrink from di(x,y,z) 

=0.5 to fsi(x,y,z)=0.5 as in Figure 6(f). 
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4.3. Field functions with a surface-defined 

inner and an outer radius for a difference 

blend BDk(f1, f2,…,fk)=0.5 

 

In a difference blend BDk(f1, f2,…,fk)=0.5, the transition is 

generated in the outer radii of primitives except f1, so  

⚫ For subtracted primitive f1 in BDk, define a field function 

as stated in Eq. (12) such that f1 =(P。Ts*。d1)(x,y,z) has 

a new subtracted-material blending region: 

 {(x,y,z)R3|d1(x,y,z)0.5 and fs1(x,y,z)0,5}. 

 

⚫ For each of subtracting primitives fi, i=2,…,k in BDk, de-

fine a field function as described in Eq. (11) such that 

fi=(P。Ta*。di)(x,y,z) has a new added-material blending 

region  

{(x,y,z)R3|di(x,y,z)0.5 and fai(x,y,z) 0.5}. 

 

4.4. Transformation function T*(d) for (P。

Ta*。di)(x,y,z) and (P。Ts*。di)(x,y,z) 
 

This section presents some transforms that are suitable for 

being used as T*(d) in Eqs. (11)-(12). 

 

4.4.1. Transformation function T*(d) for obtaining a sur-

face-defined outer radius in Eq. (11) 

 

⚫ Modulation by Tn(d) in Eq. (10).  

Tn(d) satisfies the mapping requirement [0.5, 0.5(1+w1)] to 

[0.5, 1], but it need to make sure that w22w1 and w21 hold 

while varying w1. Hence, when applied in Eq. (11) w1 and w2 

of Tn(d) need to be modified additionally as follows: 

w1 of Tn(d) = di(x,y,z)/fai(x,y,z) – 1 and 

w2 of Tn(d) =1 for w1>0.5 or w2 of Tn(d) =2w1 for w10.5. 

Varying w2 by w1 such that w22w1 is important for per-

forming bulge elimination because w1 approaches to zero 

very often. 

 

⚫ Modulation by log function Tl(d): 

Tl(d) defined below maps [0, 0.5(1+w1)] to [0, 1] and 0.5 

to 0.5:  





+

+
=

)1(5.0)2(

)1(5.01
)(

1

)(/)5.0(

1

wdmd

wd
dT

mloglogl
,         (13) 

where ln(t) denotes log(t) function and m=1/(1+w1) and 

w1>0. Tl(d) can be applied in Eq. (11) to adjust the outer 

radius by varying w1. 

 

Soft objects (P。 Tan。 di)(x,y,z)=0.5 and (P。 Tal。

di)(x,y,z)=0.5 offer an added-material blending region: 

{(x,y,z)R|di(x,y,z)0.5 and fai(x,y,z)0.5}, and the latter one 

do not need to vary w2 by w1. 

 

4.4.2. Transformation function T*(d) for obtaining a sur-

face-defined inner radius in Eq. (12) 

 

⚫ Tn(d) in Eq. (10). 

Tn(d) also satisfies the mapping requirement [0.5(1-w2), 

0.5] to [0, 0.5]. Hence, when applied in Eq. (12), to satisfy 

w22w1 w1, and w2 of Tn(d) can be set additionally by: 

w2 = 1-di(x,y,z)/fsi(x,y,z) and w1= w2. 

 

⚫ Modulation by log function Tr(d): 

Transform Tr(d), defined below, maps [0.5(1-w2), 1] to [0, 

1] and 0.5 to 0.5. 





−−−

−
=

)1(5.0))1(2(1

)1(5.00
)(

2

)(/)5.0(

2

wddm

wd
dT

mloglogr

,      (14) 

where m=1/(1+w2) and 0<w21. Tr(d) can be applied in Eq. 

(12) to adjust the inner radius by varying w2. 

 

(a)  (b)             

(c) (d)    

(e)                  (f)                     
 

Figure 6. (a). soft object of an elliptic cylinder (Pb。di)=0.5. 

(b). Level surfaces (Pb。di)=l, l=0.5, 0.35, 0.15, 0.01. (c). Modu-

lation surface fai(x,y,z)=0.5 for (Pb。Tan。di)=0.5 in (e). (d). 

Level surfaces (Pb。Tan。di)=l, l=0.5, 0.35, 0.15, 0.01. (e). 

Modulation surface fsi(x,y,z)=0.5 for (Pb。Tsn。di)=0.5 in (f). 

(f). Level surfaces (Pb。Tsn。di)=l, l=0.5, 0.65, 0.85, 0.99. 
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Soft objects (P。Tsn。di)(x,y,z)=0.5 and (P。Tsr。di)(x,y,z) 

=0.5 offer a subtracted-material blending region {(x,y,z)R| 

fsi(x,y,z)0,5 and di(x,y,z)0.5} without varying w1. 

 

4.5. Ray-linear fai(x,y,z) and fsi(x,y,z) 

 

Because fai(x,y,z) and fsi(x,y,z in Eqs. (11)-(12) need to be 

ray-linear, this section shows an easy way to create a ray-

linear function. As stated in [6], if Bk(x1,…,xk) is ray-linear 

and primitives f1,…, and fk are ray-linear, then blend 

Bk(f1,…,fk) is ray-linear, too. So, one may ray-linear blending 

operators such as union and intersection with range 

parameters in [5, 6] and super-ellipsoidal union and intersec-

tion [4] in Eqs. (7)-(8), and then create a ray-linear fai(x,y,z) 

and fsi(x,y,z) by performing applying these operators 

Bk(x1,…,xk) on the following primitives: 

⚫ Primitives of parallel planes, denoted as f(x,y,z), to obtain 

symmetrical modulation surface Bk(fp1,…,fpk)=0.5. 

fp(x,y,z)=|[x, y, z] • |/a. 

⚫ Primitives of one-branch plane, denoted as fa(x,y,z), to 

obtain asymmetrical modulation surface Bk(fo1,…,fok)=0.5. 

fo(x,y,z)=[[x, y, z] • ]+/a, 

where [*]+ Max(*, 0),  denotes a normal vector toward the 

plane and • means dot product. 

Based on these above, some modulation surfaces that offer 

six parameters, t1, t2, t3, t4, t5, t6 and … to adjust the lengths 

of positive and negative x, y and z axes, respectively, are 

created using super-ellipsoidal intersection blends and pre-

sented below: 

(1). Super-quadrics [23]:  

d(x,y,z)=((|x/a1|n1+|y/a2|n1)n2/n1+|z/a3|n2)1/n2 

and its modulation surface:  

f(x,y,z)=(([x/(t1a1)]+
n1+[-x/(t2a1)]+

n1+[y/(t3a2)]+
n1+[- 

y/(t4a2)]+
n1)n2/n1+[z/(t5a3)]+

n2+[-z/(t6a3)]+
n2)1/n2          (15) 

(2). Generalized distance function [10]: 

d(x,y,z)=( =

k

i 1 (|[x,y,z]• i/ai|n))1/n    

and its modulation surface: 

f(x,y,z)= 

( =

k

i 1 ([[x,y,z]• i/(tiai)]+
n + [[-x,-y,-z]• i/(t2iai)]+

n)1/n      (16) 

(3). Spherical cross-product function [14]: 

Given two 2D functions  h(x,y) and m(x,z) by 

h(x,y)=(|x/a1|n+|y/a2|n)1/n and m(x,z)=(xn+|z/a3|n)1/n,  

then a cross-product function d(x,y,z) is written by 

d(x,y,z)=m(h(x,y), z),                           

which can also vary to generate super-elliptic cylinders 

(Line skeletons): 

d(x,y,z)=m(h(x,y), Sign(z)[|z|-L]+),              (17) 

where Sign(*) srands for 1 if *>0, otherwise -1, d(x,y,z)=1 

has a cross-section h(x,y)=1 and his spine is along z axis and 

2L long.  

 

As for the modulation surfaces for Eq. (17), just replace 

h(x,y) and m(x,z) with: 

h(x,y)=(([x/(t1a1)]+
n+[-x/(t2a1)]+

n+[y/(t3a2)]+
n+[-y/(t4a2)]+

n)1/n  

and          m(x,z)=(xn+[z/(t5a3)]+
n+[-z/(t6a3)]+

n)1/n.                 (18) 

 

5. Applications 

 

Once primitive soft objects are defined using field func-

tions (P。Ts*。di)(x,y,z) in Eqs. (11) and (12), soft blend, 

Ricci’s and Perlin’s set blends are allowed to have the fol-

lowing applications by choosing suitable modulation surfac-

es fci(x,y,z)=0.5 as described below: 

 

(1).Application 1: Bulge elimination for a soft blend or a 

Perlin and Ricci’s union blend of interconnecting or inter-

secting super-elliptic cylinders and super-toroids: 

Even though gradient-based methods [12, 15] is not suita-

ble for these blends to eliminate bulges due to lacking range 

parameters, the bulges cam also be eliminated by defining 

primitives by fi=(P。Ts*。di)(x,y,z), i=1,..,k, and then choos-

ing modulation surfaces fai(x,y,z)=0.5 without containing the 

regions where unnecessary bulges lie.  

 

As shown in Fig. 7(a), in order to eliminate bulge cylin-

ders 1 and 2 need modulation surfaces fa(x,y,z)=0.5 that do 

not contain the top and the bottom regions above and below 

the cylinders shown in Fig. 7(b). Fortunately, super-quadrics, 

generalized distance function, super-elliptic cylinder in Eqs. 

(15)-(17) offer the ability to generate or avoid a blend on the 

Right, Left, Top, Bottom, Front or Rear region of them, as 

displayed respectively in Fig. 7(c), by setting ti, i=1-6, in-

stead of tia*, as described below:  
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⚫ Setting    ti  2, for generating a blend; 

⚫ Setting    ti=1+/a*,   for bulge eliminations,              (19) 

where 0 such as =0.1~0.05 and * is the integer greater 

than or equal to i/2. 

 

 

 

 

For example, Fig. 8(a) shows three super-elliptic cylinders 

d(x,y,z)=0.5, n=2, 4, and 8: 

d(x,y,z)=m(h(x,y), Sign(z)[|z|-16]+) 

 

where  

h(x,y)=(|x/6|n+|y/6|n)1/n and  

m(x,z)=(xn+|z/6|n)1/n.  

Fig. 8(b) shows a chair containing many bulges on the in-

tersecting and connecting regions because it is defined by 

Perlin union BPU(f1,...,f14) in Eq. (4) of cylinders fi=(P。

di)(x,y,z), i=1 to 14 where di=d(x,y,z) and n=8. However, if fi 

is defined by (P。Tan。di)(x,y,z) instead and modulation 

surface fai=0.5, i=1 to 14 is defined by Eq.(17). Thus, the 

bulges of Fig. 8(b) are removed as shown in Fig. 8(c) by 

setting ti=(1+0.1/6) to exclude those blending regions where 

bulges lie; for example, fa=0.5 of cylinders 1 and 2 are de-

fined by  

fa(x,y,z)=m(h(x,y), Sign(z)[|z|-16]+) 

where  

h(x,y)=(([x/(2*6)]+
n+[-x/(2*6)]+

n+[y/((1+0.1/6)6)]+
n+[-y/((1+ 

0.1/6)6]]+
n)1/n  and 

m(x,z)=(xn+[z/((1+0.1/6)6)]+
n+[-z/ ((1+0.1/6)6)]+

n)1/n. 

 

(2). Application 2: Avoiding unwanted blends 

In a union blend BU3(f1,f2,f3)=0.5, if the blending region of 

f1 overlaps with those of f2 and f3 at two places, then two 

blends will be generated. However, f1 can avoid the blend 

with f3 but keep the one with f3 unchanged, by defining them 

using (P。Tam。di) and then choosing a modulation surface 

fa1=0.5 such that f1’s new blend region {(x,y,z)R| d1(x,y,z) 

0.5 and fa1(x,y,z)0.5} does not touch f3’s blend region. 

For example, Fig. 9(d) displays a soft blend BSU3(f1,f2,f3) 

=0.5 of fi=(Pb。Tan。di)(x,y,z)=0.5, i=1, 2, 3, where cylinder 

f1=0.5 generates two blends respectively with cylinder f2=0.5 

and toroid f3=0.5. However, one can choose a new fa1=0.5 

for f1=0.5 such that the new region fa1(x,y,z)0.5 in Fig. 9(e) 

is shorter than the original one in Fig 9(f) and so the un-

wanted blend in region b is removed but the one in region a 

is still kept unchanged as in Fig. 9(g). The new and old 

fa1(x,y,z) and d1(x,y,z) are written below: 

new fa1(x,y,z)=old fa1(x,y,z)= 

d1(x,y,z)=m(h(x,y), Sign(z)[|z|-16]+) 

where new fa1(x,y,z), old fa1(x,y,z) and d1(x,y,z) they have 

different definitions of h(x,y) and m(x,z), respectively, by 

(a). h(x,y)= (|x/6|n+|y/6|n)1/n  and m(x,z)=(xn+|z/6|n)1/n for d1 , 

(b).h(x,y)=(([x/(2*6)]+
n+[-x/(2*6)]+

n+[y/((1+0.1/6)6)]+
n+[-

y/((1+0.1/6)*6)]+
n)1/n, and m(x,z)=(xn+[z/(2*6)]+

n+[-z/(2* 

6)]+
n)1/n  for old fa1, and 

(a)  (b)         

(c)      

 

Figure 8. (a). Cylinders with contours (xn+yn)1/n=1, i=2, 4, 8. 

(b). Perlin’s union of interconnecting cylinders that generates 

bulges. (c). The bulges in (b) are eliminated by defining cylin-

ders using (P。Tan。di) and di and fai(x,y,z) using Eq. (18), and 

then setting ti by Eq. (19) to eliminate unwanted bulges. 

 
 

Figure 7. (a). Bulge needed to be removed. (b)-(d). The 

parameters for adjusting the Right, Left, Top, Bottom, 

Front and Rear regions of a cylinder that bulges might 

occur on. 
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(c). h(x,y)=(([x/(2*6)]+
n+[-x/(2*6)]+

n+[y/((1+0.1/6)6)]+
n+[-y/ 

((1+0.1/6)*6)]+
n)1/n, m(x,z)=(xn+[z/((1+0.2/6)6)]+

n+[-z/((1+ 

0.2/6)6)]+
n)1/n  for new fa1. 

 

6. Conclusion 

 

Compared to other existing blends, although soft blend, 

Ricci’s and Perlin’s set blends have lower computing com-

plexity, they can do nothing or little for shape control, bulge 

elimination and avoiding unwanted blends because of lack-

ing range parameters and the similarity of the level surfaces 

of existing field functions. However, if primitive soft object 

are defined by using the proposed field functions with sur-

face-defined influential radii as defining functions. Because 

the proposed filed functions allow freely choosing modula-

tion surfaces to change primitives’ added-material and sub-

tracted-material blend regions,  soft blend, Ricci’s and Per-

lin’s set blends not only have lower computing complexity 

than other blends but also have the following additional ap-

plications: 

 

(1). They can perform bulge elimination on intersecting su-

per-elliptic cylinders and toroids although they do not have 

range parameters for bulge elimination using gradient-based 

methods. 

 

(2). They can do bulge elimination on high-dimensional 

blends. 

 

(3). They can remove unwanted blends. 

 

Appendix 
 

A. Definition 1: A function f(x,y,z):R3→R+ is called non-

negative ray-linear if f(a(x,y,z))=af(x,y,z) holds for any 

(x,y,z)R3 and a R+. 

 

B. Theorem 1: If f(x,y,z):R3→R+ is non-negative ray-linear, 

then f(x,y,z) can be reformulated as r/If, where 

r=(x2+y2+z2)0.5 and If is the distance from the origin to the 

intersecting point of the vector [x,y,z] with the surface 

f(x,y,z)=1. 
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