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Abstract 
Deposit insurance is a contract that allows banks 

to seek compensation for insurance companies when 

certain conditions are met (usually when assets are 

too low). In this paper, deposit insurance is regarded 

as a put option.  The uncertain fractional 

differential equation plays an important role in 

describing the uncertain dynamic process. We 

assume that bank stock prices obey an uncertain 

fractional differential equation of the Caputo type. 

Theorems for the inverse uncertain distributions of 

extreme values is given based on the definition α −
path. Due to the particularity of bank interest rates, 

it is assumed that interest rates obey an uncertain 

mean-reverting model. Based on the different 

compensation situations of insurance institutions, 

the price of deposit insurance against three cases has 

been given. Besides, numerical calculations are also 

illustrated to different parameters. 

 
Keywords: Uncertainty theory, Insurance pricing, 

mean-reverting model, fractional differential 

equation 

1. Introduction 
The deposit insurance system is a financial 

security system, which refers to the establishment of 

an insurance institution by all types of deposit 

financial institutions that meet the requirements. 

Each depository institution, as an insured person, 

pays insurance premiums for them according to a 

certain deposit ratio and establishes a deposit 

insurance reserve. When a member institution 

encounters an operating crisis or faces bankruptcy, 

the deposit insurance institution provides financial 

assistance or directly pays part or all of the deposits 

to depositors, thereby protect the interests in 

depositors, maintaining bank credit, and stabilizing 

financial order. When we want to improve the 

deposit insurance system, the most important thing 

is to determine the deposit insurance rate, that is, to 

set the price of deposit insurance. 

The current mainstream deposit insurance pricing 

methods are divided into two categories: option 

pricing models and expected loss pricing models. 

The option pricing model was first proposed by 

Merton[1] in 1977. Merton believes that insurance 

deposits owned by depository institutions are 

regarded as put options. If the depository 

institution’s assets on the maturity date are less than 

the liability, it will exercise its power. Otherwise, it 

will not exercise its power. Taking the similar 

isomorphic relationship between the deposit 

insurance contract and the put option as the main 

theoretical basis, using the option pricing model of 

Black-Scholes[2], Merton derived the calculation 

formula of the deposit insurance premium rate. 

Based on Merton’s ideas, many scholars have 

conducted in-depth research on deposit insurance 

rates for the perspective of option pricing. For 

example, Marcus and Shaked[3] improved Merton’s 

article and proposed a new option pricing model. 

Ronn and Verma[4] assume that all liabilities are 

guaranteed by deposit insurance companies. 

In the above work, the bank’s assets are described 

by the bank’s stock price, taking into account the 

random factors of the financial market. However, 

the real world is always in a state of uncertainty, 

especially in the financial sector. For the modelling 

of uncertainty factors, we can use two theories, 

probability theory and uncertainty theory. We can 

use either the stochastic differential equation in 

probability theory to describe stock prices or the 

uncertain differential equation in uncertainty theory 

to describe stock prices. And there is a premise when 

using probability theory to deal with uncertain 

factors: the probability distribution used in the 

calculation must be sufficiently close to the actual 
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frequency. That requires us to have sufficient 

sample data; Due to market or technical reason, it is 

sometimes difficult for us to obtain them in practice. 

At this time, we need to consult industry experts to 

estimate and give confidence. 

In 2007, the uncertainty theory proposed by Liu[5] 

can rationally handle confidence, then it was 

improved in 2009[6] on normality, duality, 

subadditivity and product axioms. Uncertainty 

theory and probability theory are fundamentally 

different in a theoretical basis and practical fields. 

Uncertainty theory makes up for the inaccuracy of 

probability theory when dealing with the fact that 

the actual frequency cannot be known and the 

reliability of experts has to be adopted. It provides a 

new perspective and idea for the pricing research of 

financial derivatives. In 2009, Professor Liu 

proposed an uncertain stock model and gave a 

pricing formula for European options based on this 

model. Then Chen[9] gave the pricing formulas for 

American and Asian options. Since some stocks 

fluctuate near the average price in the long run, Peng 

and Yao[10] gave an uncertain mean-reversion 

model to describe the long-term stock price. Tian[11] 

obtained the pricing formula for barrier options 

based on the uncertainty mean-reverting stock 

model. 

The price of assets in the future is not only related 

to the current price, but also to the price of a rather 

long period, time. The fractional derivatives provide 

an excellent tool for the description of memory and 

hereditary properties of the process, just in line with 

people’s sensory intuition. Zhu[12] proposed the 

concept of an uncertain fractional differential 

equation and provided a new interest rate model as 

an application. Zhu [13] proved the existence and 

uniqueness of a solution to an uncertain fractional 

differential equation. 

Regarding bank deposit insurance, we use 

Merton’s research ideas and regard it as a put option. 

The assets of the bank can be measured by changes 

in stock prices. We assume that bank stock prices 

obey an uncertain fractional differential equation. 

The discount rate of traditional option prices 

generally defaults on the risk-free interest rate. 

However, because banks need to pay depositors’ 

interest, and the difference in deposit methods and 

duration, as well as deposits and withdrawals, will 

affect the interest rate paid by banks. In the long run, 

the interest rate that the bank needs to pay is stable 

at a certain regression level; we assume that the 

interest rate that the bank needs to pay obeys an 

uncertain mean-reverting model. 

2. Preliminaries 
2.1.Uncertain variable and uncertain 

process 
 

In this section, we will introduce some basic 

definitions and theorems in uncertainty theory. 

Uncertainty theory was founded by Liu in 2007 and 

refined by Liu in 2009. Refer to [6-8] to know more 

information about an uncertain variable, uncertain 

differential equation(UDE), uncertain process. We 

suppose that a real positive number p  satisfies 

0 ≤  n −  1 <  p ≤  n  and the n  is a positive 

integer in this paper. The Ct  is a Liu canonical 

process which satisfies that : (i) C0 = 0 and almost 

all sample paths are Lipschitz continuous; (ii) Ct 

has stationary and independent increments; (iii) 

every increment Cs+t − Cs  is a normal uncertain 

variable with expected value 0 and variance t2.  

Let ℒ be a σ − algebra on a nonempty set Γ. 

A set function ℳ  : ℒ → [0,1]  is called an 

uncertain measure if it satisfies the following axioms. 

Axiom 1: ℳ{Γ} = 1 for the universal set Γ; 

Axiom 2: ℳ{Λ} + ℳ{Λc} = 1 for any event Λ ∈

ℒ; 

Axiom 3: For every countable sequence of events 

Λ1Λ1 ⋯., we have 

ℳ {⋃𝛬𝑖

∞

𝑖=1

} ≤ ∑ℳ{𝛬𝑖}

∞

𝑖=1

. 

Then, the uncertainty distribution Φ(x)  of an 

uncertain variable ξ  is defined by Liu[5] as 

Φ(x) = M{ξ ≤ x} . Correspondingly the expected 

value of uncertain variable ξ is  

E[ξ] = ∫{ξ ≥ x}

∞

0

dx − ∫{ξ < x}

0

−∞

dx, 

where at least one of the two integrals is finite. 

Let Ct  be a Liu process, f and g  are two 

functions. Then Liu defines the uncertain 

differential equation(UDE) 

  𝑑𝑋𝑡 = 𝑓(𝑡, 𝑋𝑡)𝑑𝑡 + 𝑔(𝑡, 𝑋𝑡)𝑑𝐶𝑡,    (1) 
and is said that Eq (1) has an α − paths Xt

α(0 <
α < 1)  by solving the following differential 

equation  
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𝑑𝑋𝑡
𝛼 = 𝐹(𝑡, 𝑋𝑡

𝛼)𝑑𝑡 + |𝐺(𝑡, 𝑋𝑡
𝛼)|𝛷−1(𝛼)𝑑𝑡,  (2) 

                 𝑋0
𝛼 = 𝑋0, 

 

   (2) 
where Φ−1(α)  is an inverse standard normal 

uncertainty distribution, that is 

           Φ-1(𝛼) =
√3

𝜋
ln

𝛼

1−𝛼
.        (3) 

Assume that Xt and Xt
α are the solutions and α-

path of the Eq(1), respectively. Then 

ℳ{𝑋𝑡 ≤ 𝑋𝑡
𝛼 , ∀𝑡} = 𝛼, 

        ℳ{𝑋𝑡 > 𝑋𝑡
𝛼 , ∀𝑡} = 1 − 𝛼,      

(4) 

and the inverse uncertainty distribution of the 

solution Xt is  

             𝜓𝑡
−1(𝛼) = 𝑋𝑡

𝛼 .            

(5) 

For any time s > 0, the time integral ∫ Xtdt
s

0
 has 

an inverse uncertainty distribution 

           𝛷𝑠
−1(𝛼) = ∫ 𝑋𝑡

𝛼𝑑𝑡
𝑠

0
,         (6) 

the supremum sup0≤t≤sXt  has an inverse 

uncertainty distribution 

          𝛷𝑠
−1(𝛼) = 𝑠𝑢𝑝0≤𝑡≤𝑠𝑋𝑡

𝛼 ,       (7) 

the infimum inf0≤t≤sXt has an inverse uncertainty 

distribution 

𝛷𝑠
−1(𝛼) = 𝑖𝑛𝑓0≤𝑡≤𝑠𝑋𝑡

𝛼 .       (8) 

Yao[14] proved that the expected value of Xt by  

𝐸[𝑋𝑡] = ∫ 𝑋𝑡
𝛼𝑑𝛼

1

0
.         (9) 

 

2.2. UFDE with the Caputo type 

Both Riemann-Liouville and Caputo type 

uncertain fractional differential equation(UFDE) 

was introduced by Zhu [14]. We discuss the 

following UFDE with the Caputo type in this paper. 

Suppose Ct is a Liu process, 0 < p < 1, f and g 

are two functions. Then 

{
𝐷𝑝𝑐 𝑋𝑡 = 𝐹(𝑡, 𝑋𝑡) + 𝐺(𝑡, 𝑋𝑡)

𝑑𝐶𝑡

𝑑𝑡

𝑋𝑡
(𝑘)

|
𝑡=0

= 𝑥𝑘 , 𝑘 = 0,1, … , 𝑛 − 1
 

 

(10) 

is called an uncertain fractional differential 

equation(UFDE) of Caputo type. The solution to 

above equation satisfies the following integral 

equation 

𝑋𝑡 = ∑
𝑥𝑘𝑡

𝑘

𝛤(𝑝)

𝑛−1

𝑘=0

+
1

𝛤(𝑝)
∫ (𝑡 − 𝑠)𝑝−1𝐹(𝑠, 𝑋𝑠)𝑑𝑠

𝑡

0

 

+
1

𝛤(𝑝)
∫ 𝐹(𝑠, 𝑋𝑠)(𝑡 − 𝑠)𝑝−1𝑑𝐶𝑠

𝑡

0
.         (11) 

where Γ(p) = ∫ tp−1exp (−t)dt
∞

0
 is the gamma 

function.  

A special type of UFDE is given by Lu and 

Zhu[15]. Let p be a real positive number with 0 ≤
n − 1 < p ≤ n  . Suppose that b(t)  and 

σ(t)  : [0, T] → R  are two functions. Then the 

following UFDE of the Caputo type with initial 

conditions 

{
𝐷𝑝𝑐 𝑋𝑡 = 𝑎𝑋𝑡 + 𝑏(𝑡) + 𝜎(𝑡)

𝑑𝐶𝑡

𝑑𝑡
, 𝑡 ∈ [0, 𝑇]

𝑋𝑡
(𝑘)

|
𝑡=0

= 𝑥𝑘 , 𝑘 = 0,1, … , 𝑛 − 1
   (12) 

has a solution 

𝑋𝑡 = ∑ 𝑥𝑘𝑡
𝑘𝐸𝑝,(𝑘+1)(𝑎𝑡𝑝)

𝑛−1

𝑘=0

+ ∫ (𝑡 − 𝑠)𝑝−1𝐸𝑝,𝑝(𝑎(𝑡
𝑡

0

− 𝑠)𝑝)𝑏(𝑠)𝑑𝑠

+ ∫ (𝑡 − 𝑠)𝑝−1𝐸𝑝,𝑝(𝑎(𝑡
𝑡

0

− 𝑠)𝑝)𝜎(𝑠)𝑑𝐶𝑠. 
Considering the properties of the solution, Zhu [13] 

proved that if the coefficients F(t, x) and G(t, x) 

satisfy that 

(i). Lipschitz condition: 

|𝐹(𝑡, 𝑥) − 𝐹(𝑡, 𝑦)| + |𝐺(𝑡, 𝑥) − 𝐺(𝑡, 𝑥)| ≤
𝐿|𝑥 − 𝑦|, ∀𝑥, 𝑦 ∈ 𝑅𝑛 , 𝑡 ∈ [0, +∞), 

(ii). linear growth condition: 

|𝐹(𝑡, 𝑥) + 𝐺(𝑡, 𝑥)| ≤ 𝐿(1 + |𝑥|), ∀𝑥, 𝑦 ∈
𝑅𝑛 , 𝑡 ∈ [0, +∞), 

where  L is a positive constant, then the solution 

Xt in t ∈ [0, +∞) of UFDE of the Caputo type(6) 

exists and is unique. 

To solve UFDE’s solution numerically and then 

α − path is given. It is the solution to the following 

equation 

{
𝐷𝑝𝑐 𝑋𝑡 = 𝐹(𝑡, 𝑋𝑡

𝛼) + |𝐺(𝑡, 𝑋𝑡
𝛼)|𝛷−1(𝛼)

𝑋𝑡
(𝑘)

|
𝑡=0

= 𝑥𝑘 , 𝑘 = 0,1, … , 𝑛 − 1,
    (13) 
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where 0 < α < 1 and Φ−1(α) =
√3

π
ln

α

1−α
. 

Lu and Zhu [15] also established the relation 

between UFDEs and FDEs. Let Xt  and Xt
α  be 

unique solution and α-path of (10), respectively. We 

have 

{
ℳ{Xt ≤ Xt

α, ∀t ∈ [0, T]} = α        

ℳ{Xt > Xt
α, ∀t ∈ [0, T]} = 1 − α.

 

The solution’s inverse uncertain distribution is  

𝛹𝑠
−1(𝛼) = 𝑋𝑡

𝛼 ,            (14) 

which can be seen in [13]. 

3. Deposit insurance pricing  
Regarding bank deposits, we use Merton’s 

research ideas and regard it as a put option. A bank 

belongs to a financial institution whose assets can be 

measured by changes in stock prices. We assume 

that the bank’s stock price obeys an uncertain 

fractional differential equation 

𝐷𝑝𝑐 𝑆𝑡 = 𝜇𝑆𝑡 + 𝜎2
𝑑𝐶2𝑡

𝑑𝑡
.           (15) 

In traditional option pricing, the discount rate 

generally defaults on the risk-free interest rate. 

However, the bank needs to pay depositor interest, 

and the difference in saving methods and duration, 

deposits, withdrawals and other factors will affect 

the interest rate paid by the bank. In the long run, the 

interest rate that the bank needs to pay is stable at a 

certain regression level. Hence, we assume that the 

interest rate that the bank needs to pay obeys an 

uncertain mean-reverting model 

𝑟𝑡 = (𝑚 − 𝑎𝑟𝑡)𝑑𝑡 + 𝜎1𝑑𝐶1𝑡          (16) 

Therefore, the deposit insurance pricing model as 

follows 

{

𝑑𝑟𝑡 = (𝑚 − 𝑎𝑟𝑡)𝑑𝑡 + 𝜎1𝑑𝐶1𝑡

𝐷𝑝𝑐 𝑆𝑡 = 𝜇𝑆𝑡 + 𝜎2
𝑑𝐶2𝑡

𝑑𝑡
           

𝑆𝑡
(𝑘)

|
𝑡=0

= 𝑠𝑘 , 𝑘 = 0,1, … , 𝑛 − 1,

     (17) 

where 0 ≤ 𝑛 − 1 < 𝑝 ≤ 𝑛 , 𝑚 > 0, 𝑎 > 0 ,St  is 

the stock price, rt > 0  is the interest rate, μ is the 

stock drift, σ1, σ2 > 0 are the stock diffusions, and 

C1t, C2t are independent Liu processes. Solving the 

following differential equation 

𝑑𝑟𝑡
𝛼 = (𝑚 − 𝑎𝑟𝑡

𝛼)𝑑𝑡 + 𝜎1𝛷
−1(𝛼)𝑑𝑡, 

we get 

𝑟𝑡
𝛼 =

1

𝑎
(𝑚 + 𝜎1𝛷

−1(𝛼))(1 − 𝑒𝑥𝑝(−𝑎𝑡))

+ 𝑒𝑥𝑝(−𝑎𝑡) 𝑟0, 

where 

𝛷−1(𝛼) =
√3

𝜋
ln

𝛼

1 − 𝛼
. 

Hence uncertain differential equation 

𝑑𝑟𝑡 = (𝑚 − 𝑎𝑟𝑡)𝑑𝑡 + 𝜎1𝑑𝐶1𝑡 

has the α − path  rt
α . Then rt  has an inverse 

uncertainty distribution φt
−1 = rt

α. So ∫ rtdt
T

0
 has 

an inverse uncertainty distribution 

𝛷𝑇
−1(𝛼) = ∫ 𝑟𝑡

𝛼𝑑𝑡
𝑇

0

. 

Calculating ∫ rt
αdt

T

0
, we get  

    

𝛷𝑇
−1(𝛼) =

1

𝑎
[((𝑚 +

√3𝜎1

𝜋
𝑙𝑛

𝛼

1−𝛼
) (𝑇 +

1

𝑎
𝑒𝑥𝑝(−𝑎𝑇)) −

1

𝑎
) + 𝑟0(1 − 𝑒𝑥𝑝(−𝑎𝑇))].                      

(18) 

Because y = exp (−x) is a monotone decreasing 

function of x, the exp (−∫ rtdt)
T

0
 has an inverse 

uncertainty distribution  

𝛷1𝑇
−1(𝛼) = 𝑒𝑥𝑝(𝛷𝑇

−1(1 − 𝛼)) 

                                    = 𝑒𝑥 𝑝 (−∫ 𝑟𝑡
1−𝛼𝑑𝑡

𝑇

0
).     (19) 

Simultaneously, for the stock price system 

{
𝐷𝑝𝑐 𝑆𝑡 = 𝜇𝑆𝑡 + 𝜎2

𝑑𝐶2𝑡

𝑑𝑡

St
(k)

= sk, k = 0,1, … , n − 1.
         (20) 

Meanwhile, according to Eq.(12) and Eq.(5),the 

Eq.(20) has an α − path 

𝑆𝑡
𝛼 = ∑ 𝑠𝑘𝑡

𝑘𝐸𝑝,(𝑘+1) ((𝜇 + 𝜎2𝛷
−1(𝛼))𝑡𝑝) .

𝑛−1

𝑘=0

 

Hence the St  has an inverse uncertainty 

distribution 
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𝛶𝑡
−1(𝛼) = ∑ 𝑠𝑘𝑡

𝑘𝐸𝑝,(𝑘+1) ((𝜇 + 𝜎2𝛷
−1(𝛼))𝑡𝑝)

𝑛−1

𝑘=0

. 

Theorem 3.1. Let Xt  and Xt
α  are the unique 

solution and α − path , respectively, for the 

following UFDE 

{
𝐷𝑝𝑐 𝑋𝑡 = 𝐹1(𝑡, 𝑋𝑡) + 𝐺1(𝑡, 𝑋𝑡)

𝑑𝐶𝑡

𝑑𝑡

𝑋𝑡
(𝑘)

|
𝑡=0

= 𝑥𝑘 , 𝑘 = 0,1,… , 𝑛 − 1.
 

Let Yt  and Yt
α  are the unique solution and α −

path, respectively, for the following UDE 

𝑑𝑌𝑡 = 𝐹2(𝑡, 𝑌𝑡)𝑑𝑡 + 𝐺2(𝑡, 𝑌𝑡)𝑑𝐶𝑡 . 

In addition, Xt  and Yt  are independent uncertain 

processes f(x) and g(x) are decreasing functions 

of x  with f(x) ≥ 0  and g(x) ≥ 0 . Then the 

inverse uncertain distribution of the supremum 

𝑠𝑢𝑝0≤𝑡≤𝑠𝑓(𝑋𝑡)𝑔(𝑌𝑡) is 

𝜓𝑠
−1(𝛼) = 𝑠𝑢𝑝0≤𝑡≤𝑠𝑓(𝑋𝑡

1−𝛼)𝑔(𝑌𝑡
1−𝛼).   (21) 

Proof . We firstly set  

Λ1
+ =

{γ|f(Xt(γ)) ≤ f(Xt
α(γ)), g(Yt(γ)) ≤ g(Yt

α(γ)), ∀t}, 

Λ1
− =

{γ|f(Xt(γ)) > f(Xt
α(γ)), g(Yt(γ)) > g(Yt

α(γ)), ∀t}, 

Λ2
+ =

{γ|f(Xt(γ))g(Yt(γ)) ≤ f(Xt
α(γ))g(Yt

α(γ)), ∀t}, 

Λ2
− =

{γ|f(Xt(γ))g(Yt(γ)) > f(Xt
α(γ))g(Yt

α(γ)), ∀t}, 

Λ3
+ = {γ|

sup0≤t≤sf(Xt(γ))g(Yt(γ)) ≤

sup0≤t≤sf(Xt
α(γ))g(Yt

α(γ))
}, 

Λ3
− = {γ|

sup0≤t≤sf(Xt(γ))g(Yt(γ))

> sup0≤t≤sf(Xt
α(γ))g(Yt

α(γ))
}, 

It is that Λ1
+ ⊂ Λ2

+ ⊂ Λ3
+. Besides, Λ1

− ⊂ Λ2
− ⊂ Λ3

−. 

Then, we derive 

ℳ{Λ3
+} ≥ ℳ{Λ2

+} ≥ ℳ{Λ1
+}   

             ≥ ℳ{Xt > Xt
α, Yt > Yt

α, ∀t}         

 = 𝑀{𝑋𝑡 > 𝑋𝑡
𝛼 , ∀𝑡} ∧ 𝑀{𝑌𝑡 > 𝑌𝑡

𝛼 , ∀𝑡}  =

1 − 𝛼.                         (22) 

ℳ{Λ3
−} ≥ ℳ{Λ2

−} ≥ ℳ{Λ1
−}   

             ≥ ℳ{Xt ≤ Xt
α, Yt ≤ Yt

α, ∀t}               

 = {𝑋𝑡 ≤ 𝑋𝑡
𝛼 , ∀𝑡} ∧ 𝑀{𝑌𝑡 ≤ 𝑌𝑡

𝛼 , ∀𝑡}         

= 𝛼                             

(23) 

Since the measures of 𝛬2
+ and 𝛬2

− satisfy that 

ℳ{Λ3
+} + ℳ{Λ3

−} = 1 − α. 

Combining the above conclusion, we obtain that 

ℳ{Λ3
+} = 1 − α, ℳ{Λ3

−} = α. 

That is 

ℳ{𝑠𝑢𝑝0≤𝑡≤𝑠𝑓(𝑋𝑡)𝑔(𝑌𝑡) ≤ 𝑠𝑢𝑝0≤𝑡≤𝑠𝑓(𝑋𝑡
𝛼)𝑔(𝑌𝑡

𝛼)}
= 1 − 𝛼, 

ℳ{𝑠𝑢𝑝0≤𝑡≤𝑠𝑓(𝑋𝑡)𝑔(𝑌𝑡) > 𝑠𝑢𝑝0≤𝑡≤𝑠𝑓(𝑋𝑡
𝛼)𝑔(𝑌𝑡

𝛼)}
= 𝛼 . 

Then let 1 − α replace α, we get 

ℳ{sup0≤t≤sf(Xt)g(Yt)
≤ sup0≤t≤sf(Xt

1−α)g(Yt
1−α)} = α, 

ℳ{sup0≤t≤sf(Xt)g(Yt)
> sup0≤t≤sf(Xt

1−α)g(Yt
1−α)}

= 1 − α. 

That is to say, the inverse uncertain distribution of 

𝑠𝑢𝑝0≤𝑡≤𝑠𝑓(𝑋𝑡)𝑔(𝑌𝑡) is 

𝜓𝑠
−1(𝛼) = 𝑠𝑢𝑝0≤𝑡≤𝑠𝑓(𝑋𝑡

1−𝛼)𝑔(𝑌𝑡
1−𝛼). 

The theorem has been proved. 

Theorem 3.2. Let Xt  and Xt
α  are the unique 

solution and α − path for the following UFDE 

{
𝐷𝑝𝑐 𝑋𝑡 = 𝐹1(𝑡, 𝑋𝑡) + 𝐺1(𝑡, 𝑋𝑡)

𝑑𝐶𝑡

𝑑𝑡

𝑋𝑡
(𝑘)

|
𝑡=0

= 𝑥𝑘 , 𝑘 = 0,1, … , 𝑛 − 1.
  

Let Yt and Yt
α are the unique solutions as well as 

α − path for the following UDE 

𝑑𝑌𝑡 = 𝐹2(𝑡, 𝑋𝑡)𝑑𝑡 + 𝐺2(𝑡, 𝑋𝑡)𝑑𝐶𝑡 .  

In addition, Xt  and Yt  are independent uncertain 

processes f(x) and g(x) are increasing functions 

of x with f(x) ≥ 0 and g(x) ≥ 0. Then the IUD 

of the supremum 𝑠𝑢𝑝0≤𝑡≤𝑠𝑓(𝑋𝑡)𝑔(𝑌𝑡) is 

𝜓𝑠
−1(𝛼) = 𝑠𝑢𝑝0≤𝑡≤𝑠𝑓(𝑋𝑡

𝛼)𝑔(𝑌𝑡
𝛼).       (24) 

Proof . The proof is similar to that of Theorem 3.1. 
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3.1. Analog European put option 

When the regulatory authority reviews bank 

assets at regular intervals and the assets are found to 

be less than the liabilities, the insurance contract will 

be an effect. Otherwise, it will not take effect. At this 

point, we can regard the insurance contract as a 

European put option. Among them, bank assets are 

estimated by stock prices, and liabilities K  are 

recorded as the strike price, which is a constant. The 

fp indicates the deposit insurance contract price. 

At the t = T, the bank’s income is (K − ST)+, 

and at the t = 0, the bank’s income is 

𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑆𝑇)
+. 

Then, we get bank net income at 𝑡 = 0 

−𝑓𝑝 + 𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑆𝑇)
+. 

In the same way, we can get the net income of the 

insurance formula at 𝑡 = 0 

𝑓𝑝 − 𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑆𝑇)+. 

From the principle of fair pricing, we get insurance 

pricing formula 

𝑓𝑝 = 𝐸 [𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0
(𝐾 − 𝑆𝑇)

+]      (25) 

Theorem 3.3. When treating deposit insurance as a 

European put option of a strike price K, we get 

insurance price 

𝑓𝑝 = ∫ 𝑒𝑥𝑝 (−𝛷𝑇
−1(𝛼))(𝐾 − 𝛶𝑇

−1(𝛼))+1

0
𝑑𝛼,   (26) 

where 

𝛷𝑇
−1(𝛼) =

1

𝑎
[((𝑚 +

√3𝜎1

𝜋
𝑙𝑛

𝛼

1 − 𝛼
)(𝑇

+
1

𝑎
𝑒𝑥𝑝(−𝑎𝑇)) −

1

𝑎
)

+ 𝑟0(1 − 𝑒𝑥𝑝(−𝑎𝑇))], 

𝛶𝑇
−1(𝛼) = ∑ 𝑠𝑘𝑇

𝑘𝐸𝑝,(𝑘+1)((𝜇

𝑛−1

𝑘=0

+ 𝜎2

√3

𝜋
𝑙𝑛

𝛼

1 − 𝛼
)𝑇𝑝). 

Proof. Because (𝐾 − 𝑆𝑇)
+ is decreasing function 

of the 𝑆𝑇 , then (𝐾 − 𝑆𝑇)+  has an inverse 

uncertainty distribution 

𝛷2𝑇
−1(𝛼) = (𝐾 − 𝛶𝑇

−1(1 − 𝛼))+. 

Because C1t, C2t  are independent Liu processes 

and 𝑧 =  𝑥𝑦  is increasing function of x  and y 

for x ≥ 0 and y ≥ 0, then 𝑒𝑥𝑝 (− ∫ 𝑟𝑡𝑑𝑡)
𝑇

0
(𝐾 −

𝑆𝑇)
+ has an inverse uncertainty distribution 

𝜓𝑇
−1 = 𝛷1𝑇

−1(𝛼)𝛷2𝑇
−1(𝛼) 

= 𝑒𝑥𝑝(−𝛷𝑇
−1(1 − 𝛼))(𝐾 − 𝛶𝑇

−1(1 − 𝛼))
+
.  

So 

𝑓𝑝 = 𝐸 [𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑆𝑇)
+] 

= ∫ 𝑒𝑥𝑝 (−𝛷𝑇
−1(1 − 𝛼))(𝐾 − 𝛶𝑇

−1(1 − 𝛼))+𝑑𝛼
1

0

 

= ∫ 𝑒𝑥𝑝(−𝛷𝑇
−1(𝛼)) (𝐾 − 𝛶𝑇

−1(𝛼))+𝑑𝛼,
1

0
     (27) 

where 

𝛷𝑇
−1(𝛼) =

1

𝑎
[((𝑚 +

√3𝜎1

𝜋
𝑙𝑛

𝛼

1 − 𝛼
)(𝑇

+
1

𝑎
𝑒𝑥𝑝(−𝑎𝑇)) −

1

𝑎
)

+ 𝑟0(1 − 𝑒𝑥𝑝(−𝑎𝑇))], 

𝛶𝑇
−1(𝛼) = ∑ 𝑠𝑘𝑇

𝑘𝐸𝑝,(𝑘+1)((𝜇

𝑛−1

𝑘=0

+ 𝜎2

√3

𝜋
𝑙𝑛

𝛼

1 − 𝛼
)𝑇𝑝). 

According to Theorems 3.3, the algorithm to 

compute the analogue European put option price is 

given as follows. 

 

Algorithm 1. The expected value of the analogue 

European put option. 
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Step 1: Set the parameters a, m,  σ1, T, r0, μ, σ2,

K, sk(k = 0, 1, 2… ). 

Step 2: Choose a large number N according to the 

desired precision. Set αi =
i

N
. 

Step 3:i = 0, Z = 0. 

Step 4:i ← i + 1. 

Step 5:  𝑥𝑖 = exp(−
1

𝑎
[((𝑚 +

√3𝜎1

𝜋
𝑙𝑛

𝛼𝑖

1−𝛼𝑖
) (𝑇 +

1

𝑎
exp(−𝑎𝑇)) −

1

𝑎
) +

𝑟0(1 − exp(−𝑎𝑇))]). 

Step 6:   y
i
= max (0, K − ∑ skT

kEp,(k+1)((μ +n−1
k=0

σ2
√3

π
ln

αi

1−αi
)Tp). 

Step 7: Z = Z +  xi yi. 

Step 8: if i < N − 1, return to step 4. 

Step 9: The price of Deposit insurance is fp =
Z

N−1
. 

Example 1. Assume deposit insurance pricing 

model(17) has current price s0 = 35, s1 = 2 , and 

the drift coefficient μ = 0.05, diffusion coefficient 

σ1 = 0.25, σ2 = 0.2 , the r0 = 0.08 , regression 

coefficients m = 1, constant a = 0.5, T = 1. The 

strike prices K = 32. According to Theorem 3.3 for 

such model, we can calculate out the prices for 

different p(0 < p ≤ 2). Then, we get the different 

price of fpal shown in Table 1 by Algorithm 1. 

Table 1.Analog European put option price with 

different order p’s. 

p 0.1 0.2 0.3 0.4 0.5 

fp 2.8441 3.0094 3.1476 3.2576 3.3372 

p 0.6 0.7 0.8 0.9 1.0 

fp 3.3839 3.3958 3.3718 3.3113 3.2143 

p 1.1 1.2 1.3 1.4 1.5 

fp 2.0867 1.9371 1.7653 1.5771 1.3786 

p 1.6 1.7 1.8 1.9 2 

fp 1.1762 0.9761 0.7839 0.6049 0.4437 

 

Table 1 indicates that the price of fp increases to 

p  in (0,0.7] , but decreases to p  in (0.7,1]  or 

(1,2] . The price in (0,1]  is greater than (1,2] . 

Since the initial s′(0) works, p = 1 is a special 

point. The price jumps(decreases) a little from p =
1 to p = 1.1. 

 

3.2 Analog American look-back put 

option 

Supervisors regularly check bank assets to see 

whether there is a moment the bank assets are less 

than its liabilities (deposits). When it does, the 

insurance contract takes effect. Otherwise, it will not 

take effect. At this point, we can regard the 

insurance as an American look-back put option. At 

the t = T, the bank’s income is 

(K − inf0≤t≤TSt)
+. 

Then at the t = 0, the bank’s income is  

𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑖𝑛𝑓0≤𝑡≤𝑇𝑆𝑡)
+. 

Therefore, at t = 0, we got bank’s net income 

−𝑓𝑝𝑎𝑙 + 𝑒𝑥𝑝 (− ∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑖𝑛𝑓0≤𝑡≤𝑇𝑆𝑡)
+. 

In the same way, we can get the net income of the 

insurance formula at t = 0 

𝑓𝑝𝑎𝑙 − 𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑖𝑛𝑓0≤𝑡≤𝑇𝑆𝑡)
+ 

From the principle of fair pricing, we get insurance 

pricing formula 

𝑓𝑝𝑎𝑙 = 𝐸 [𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑖𝑛𝑓0≤𝑡≤𝑇𝑆𝑡)
+]. 

Theorem 3.4  When treating deposit insurance as 

an American look-back put option of a strike price 

K, we got insurance price 

𝑓𝑝𝑎𝑙 = ∫ 𝑒𝑥𝑝 (−𝛷𝑇
−1(𝛼))(𝐾 −

1

0

𝑖𝑛𝑓0≤𝑡≤𝑇𝛶𝑡
−1(𝛼))+ 𝑑𝛼,    (28) 

where  
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𝛷𝑇
−1(𝛼) =

1

𝑎
[((𝑚 +

√3𝜎1

𝜋
𝑙𝑛

𝛼

1 − 𝛼
)(𝑇

+
1

𝑎
𝑒𝑥𝑝(−𝑎𝑇)) −

1

𝑎
)

+ 𝑟0(1 − 𝑒𝑥𝑝(−𝑎𝑇))], 

𝛶𝑡
−1(𝛼) = ∑ 𝑠𝑘𝑡

𝑘𝐸𝑝,(𝑘+1)((𝜇

𝑛−1

𝑘=0

+ 𝜎2

√3

𝜋
𝑙𝑛

𝛼

1 − 𝛼
)𝑡𝑝). 

Proof. Because (K − inf0≤t≤TSt)
+  is decreasing 

function of St , then (K − inf0≤t≤TSt)
+  has an 

inverse uncertainty distribution 

𝛷2𝑇
−1(𝛼) = (𝐾 − 𝑖𝑛𝑓0≤𝑡≤𝑇𝛶𝑡

−1(1 − 𝛼))+. 

Because C1t, C2t  are independent Liu processes 

and z =  xy is increasing function of x and y for 

x ≥ 0 and y ≥ 0 , then exp (−∫ rtdt)
T

0
(K −

inf0≤t≤TSt)
+ has an inverse uncertainty distribution 

𝜓2𝑇
−1 = 𝛷1𝑇

−1(𝛼)𝛷2𝑇
−1(𝛼)

= 𝑒𝑥 𝑝(−𝛷𝑇
−1(1 − 𝛼)) (𝐾

− 𝑖𝑛𝑓0≤𝑡≤𝑇𝛶𝑡
−1(1 − 𝛼))

+
. 

So 

𝑓𝑝𝑎𝑙 = 𝐸 [𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑖𝑛𝑓0≤𝑡≤𝑇𝑆𝑡)
+] 

= ∫ 𝑒𝑥𝑝(−𝛷𝑇
−1(1 − 𝛼))

1

0

 

(𝐾 − 𝑖𝑛𝑓0≤𝑡≤𝑇𝛶𝑡
−1(1 − 𝛼))

+
𝑑𝛼     

= ∫ 𝑒𝑥𝑝(−𝛷𝑇
−1(𝛼)) (𝐾 − 𝑖𝑛𝑓0≤𝑡≤𝑇𝛶𝑡

−1(𝛼))
+
𝑑𝛼

1

0
,    

(29) 

where 

𝛷𝑇
−1(𝛼) =

1

𝑎
[((𝑚 +

√3𝜎1

𝜋
𝑙𝑛

𝛼

1 − 𝛼
)(𝑇

+
1

𝑎
𝑒𝑥𝑝(−𝑎𝑇)) −

1

𝑎
)

+ 𝑟0(1 − 𝑒𝑥𝑝(−𝑎𝑇))], 

𝛶𝑡
−1(𝛼) = ∑ 𝑠𝑘𝑡

𝑘𝐸𝑝,(𝑘+1)((𝜇

𝑛−1

𝑘=0

+ 𝜎2

√3

𝜋
𝑙𝑛

𝛼

1 − 𝛼
)𝑡𝑝). 

According to Theorems 3.4, the algorithm to 

compute the analogue American look-back put 

option price is given as follows. 

 

Algorithm 2. The expected value of the analogue 

American look-back put option. 

Step 1: Set the parameters a, m, σ1, T,   r0, μ, σ2,
K, sk(k = 0, 1, 2… ). 

Step 2: Choose a large number N according to the 

desired precision. Set αi =
i

N
. 

Step 3: Set i = 0, Z = 0. 

Step 4: i ← i + 1. 

Step 5: Set  xi = exp (−
1

a
[((m +

√3σ1

π
ln

αi

1−αi
) (T +

1

a
exp(−aT)) −

1

a
) +

r0(1 − exp(−aT))]). 

Step 6: Choose a large number M, Set tj =
j

M
T. 

Step 7: j = 0. 

Step 8: j ← j + 1. 

Step 9: Set Aj = ∑ sktj
kEp,(k+1)((μ +n−1

k=0

σ2
√3

π
ln

α

1−α
)tj

p). 

Step 10: If  j = 1 , then Bj = Aj.    Else: Bj =

min {Aj, Bj}. 

Step 11: If j < M − 1, return step 8. 
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Step 12:   yi = max (0, K −

inf0≤t𝑗≤T ∑ skt𝑗
kEp,(k+1)((μ + σ2

√3

π
ln

αi

1−αi
)t𝑗

p)n−1
k=0 . 

Step 13: Z = Z +  xi yi. 

Step 14: if i < N − 1, return to step 4. 

Step 15: The price of Deposit insurance is 𝑓𝑝𝑎𝑙 =
𝑍

𝑁−1
. 

Example 2. Assume a deposit insurance pricing(17) 

model has current price s0 = 35, s1 = 2, and the 

drift coefficient μ = 0.05,  diffusion coefficient 

σ1 = 0.25, σ2 = 0.  And the r0 = 0.08 , the 

regression coefficients m = 1 , constant  a = 0.6 , 

T = 1 . The strike prices K = 32 . According to 

Theorem 3.4 for such model, we can calculate out 

the prices for different p(0 < p ≤ 2). Then, we get 

the different price of fpal  shown in Table 2 by 

Algorithm 2. 

Table 2 indicates that the price of fpal increases 

to p in (0,0.7) , but decreases to p in (1,2] or  

(0.7,1]. And the price in (0,1] is greater than (1,2]. 
Since the initial s′(0) works, p = 1 is a special 

point. The price jumps(decreases) a little from p =
1 to p = 1.1. 

Table 2.  Analog American look-back put option 

price with different order p’s. 

p 0.1 0.2 0.3 0.4 0.5 

fpal 1.6156 1.7144 1.7961 1.8604 1.9056 

p 0.6 0.7 0.8 0.9 1.0 

fpal 1.9306 1.9343 1.9164 1.8769 1.8158 

p 1.1 1.2 1.3 1.4 1.5 

fpal 1.1210 1.0344 0.9361 0.8297 0.7186 

p 1.6 1.7 1.8 1.9 2 

fpal 0.6072 0.4983 0.3953 0.3009 0.2174 

 

3.3 Analog American put option 

When the bank discovers that its assets are not 

enough to pay its liabilities (deposits) at any time t, 
it proactively applies for bankruptcy liquidation. At 

this time, we regard insurance as an American put 

option. Let fpa represent the price of this insurance 

contract. Then at the time 0, the net return to the 

bank is  

𝑠𝑢𝑝0≤𝑡≤𝑇𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑆𝑡)
+. 

Then, we got Bank net income at t = 0 

−𝑓𝑝𝑎 + 𝑠𝑢𝑝0≤𝑡≤𝑇𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑆𝑡)
+. 

In the same way, we can get the net income of the 

insurance formula at t = 0 

𝑓𝑝𝑎 − 𝑠𝑢𝑝0≤𝑡≤𝑇𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑆𝑡)
+. 

From the principle of fair pricing, we get Insurance 

pricing formula 

𝑓𝑝𝑎 = 𝐸 [𝑠𝑢𝑝0≤𝑡≤𝑇𝑒𝑥𝑝 (−∫ 𝑟𝑡𝑑𝑡)
𝑇

0

(𝐾 − 𝑆𝑡)
+]. 

Theorem 3.5.  When treating deposit insurance as 

an American put option of a strike price K, we got 

the insurance price is 

𝑓𝑝𝑎 = ∫ 𝑠𝑢𝑝0≤𝑡≤𝑇𝑒𝑥𝑝 (−𝛷𝑡
−1(𝛼))(𝐾 −

1

0

𝛶𝑡
−1(𝛼))+ 𝑑𝛼,(30) 

where 

𝛷𝑡
−1(𝛼) =

1

𝑎
[((𝑚 +

√3𝜎1

𝜋
𝑙𝑛

𝛼

1 − 𝛼
)(𝑡

+
1

𝑎
𝑒𝑥𝑝(−𝑎𝑡)) −

1

𝑎
)

+ 𝑟0(1 − 𝑒𝑥𝑝(−𝑎𝑡))], 

𝛶𝑡
−1(𝛼) = ∑ 𝑠𝑘𝑡

𝑘𝐸𝑝,(𝑘+1)((𝜇

𝑛−1

𝑘=0

+ 𝜎2

√3

𝜋
𝑙𝑛

𝛼

1 − 𝛼
)𝑡𝑝). 

Proof. Because (K − St)
+  is decreasing function 

of the St , exp (−∫ rtdt)
T

0
 is decreasing function 

of the rt , according to theorem 3.1, the 

sup0≤t≤Texp (−∫ rtdt)
T

0
(K − ST)+ has an inverse 

uncertainty distribution 
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𝜓2𝑡
−1 = 𝑠𝑢𝑝0≤𝑡≤𝑇𝑒𝑥𝑝 (−𝛷𝑡

−1(1 − 𝛼))(𝐾 − 𝛶𝑡
−1(1

− 𝛼))+. 

So 

fpa=E [sup0≤t≤Texp (- ∫ rtdt)
T

0

(K-St)
+] 

=∫ sup0≤t≤Texp ( − Φt
−1(1 − α))(K-Υt

-1(1-α))
+
dα

1

0

 

=∫ sup0≤t≤Texp ( − 𝛷𝑡
−1(𝛼))(K-Υt

-1(α))+dα
1

0
, 

(31) 

where 

Φt
-1(α)=

1

a

[
 
 
 
 
((m+

√3σ1

π
ln

α

1-α
) (t+

1

a
exp(-at)) -

1

a
)

+ r0(1-exp(-at) ) ]
 
 
 
 

, 

Υt
-1(α)= ∑skt

kEp,(k+1)((μ+σ2

√3

π
ln

α

1-α
)tp)

n-1

k=0

. 

According to Theorems 3.5, the algorithm to 

compute the analogue American put option price is 

given as follows. 

 

Algorithm 3.  The expected value of the analogue 

American put option 

Step 1: Set the parameters a, m, σ1, T,   r0, μ, σ2,
K, sk(k = 0, 1, 2… ). 

Step 2: Choose a large number N according to the 

desired precision. Set αi =
i

N
. 

Step 3: Set i = 0, Z = 0. 

Step 4: i ← i + 1. 

Step 5: Choose a large number M, Set tj =
j

M
T. 

Step 6: j = 0. 

Step 7: j ← j + 1. 

Step 8: Set  xij = exp (−
1

a
[((m +

√3σ1

π
ln

αi

1−αi
) (tj +

1

a
exp(−aT)) −

1

a
) +

r0(1 − exp(−atj))]) . 

Step 9: Set   yij = max (0, K −

∑ sktj
kEp,(k+1) ((μ + σ2

√3

π
ln

αi

1−αi
) tj

p) .n−1
k=0  

Step 10: Let Aij =  xij yij. 

Step 11: If  j = 1,  then Zi = Aij ,   Else Zi =

max {Zi, Aij}. 

Step 12: If  j < M − 1, return step 7. 

Step 13: Z = Z +  xi yi. 

Step 14: if i < N − 1, return to step 4. 

Step 15: The price of Deposit insurance is 𝑓𝑝𝑎 =
𝑍

𝑁−1
. 

Example 3.  Assume a deposit insurance pricing 

model(17) has current price s0 = 35, s1 = 1 , and 

the drift coefficient μ = 0.05,, diffusion coefficient 

σ1 = 0.25, σ2 = 0.2, the r0 = 0.08, the regression 

coefficients m = 1, constant a = 0.9. T = 1. The 

strike prices K = 29. According to Theorem 3.4 for 

such model, we can calculate out the prices for 

different p(0 < p ≤ 2). Then, we get the different 

price of fpa shown in Table 3 by Algorithm 3. 

Table 3. Analog American put option price with 

different order p’s. 

p 0.1 0.2 0.3 0.4 0.5 

fpa 9.869 10.305 10.911 11.4440 11.879 

p 0.6 0.7 0.8 0.9 1.0 

fpa 12.215 12.431 12.511 12.439 12.205 

p 1.1 1.2 1.3 1.4 1.5 

fpa 10.344 9.754 9.012 8.134 7.142 

p 1.6 1.7 1.8 1.9 2 

fpa 6.063 4.923 3.745 2.554 1.370 

 

Table 3 indicates that the price of fpa increases 

to p in (0,0.8], but decreases to p in (0.8,1] or 

(1,2]. And the price in (0,1] is much greater than 

(1,2] . Since the initial s′(0)  works, p = 1  is a 

special point. The price jumps(decreases) a little 

from  p = 1 to p = 1.1.  
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In this case, the insurance company needs to take 

more risks, so the price is great than Table 1 with the 

same p. 

4.  Conclusion 
Based on the uncertainty theory and the α − path 

of UFDE involving Caputo derivative, this paper 

assumes that the bank’s stock prices to obeying a 

UFDE and the discount rates to obeying a UDE. 

Then we obtained the pricing formulas for deposit 

insurance against three cases and gave the numerical 

example of each case. There are many factors that 

we haven’t discussed yet. For example, banks have 

minimum deposit requirements, and banks’ interest 

rates have upper and lower limits. Bank assets are 

not only affected by stock prices, but also by 

deposits and withdrawals, etc. There are still a lot of 

works we may do. 

Acknowledgements 
This work is supported by the National Natural 

Science Foundation of China (Grant No. 61673011).  

 

References 
 

[1]   R. Merton, An analytic derivation of the cost 

of deposit insurance and loan guarantees, 

Journal of Banking and Finance, 1, 1977, 3-

11. 

[2]   F. Black, M. Scholes, The Pricing of options 

and corporate liabilities, Journal of Political 

Economy, 81(3), 1973, 637-654. 

[3]   A. Marcus, I. Shaked, the valuation of FDIC 

deposit insurance using option-pricing 

estimates, Journal of Money, Credit and 

Banking, 16(4), 1984, 446-460. 

[4]   E. Ronn, A. Verma, Pricing Risk-Adjusted 

Deposit Insurance: An Option-Based Model, 

The Journal of Finance, 41(4), 1986, 871-895. 

[5]   B. Liu, Uncertainty Theory, 2nd edition 

(Springer-Verlag, Berlin, 2007). 

[6]  B. Liu, Some research problems in uncertainty 

theory, Journal of Uncertain Systems, 3(1), 

2009, 3-10. 

[7]   B. Liu, Fuzzy Process, Hybrid process and 

uncertain process, Journal of Uncertain 

Systems, 2(1), 2008, 3-16. 

[8]   B. Liu, Uncertainty Theory: A Branch of 

Mathematics for Modeling Human 

Uncertainty (Springer-Verlag, Berlin, 2010). 

[9]   X. Chen, American option pricing formula 

for uncertain financial market, International 

Journal of Operational Research, 8(2), 2011, 

32-37. 

[10]  K. Yao, A no-arbitrage theorem for  

uncertain stock model, Fuzzy Optimization 

and Decision Making, 14(2), 2015, 227-242. 

[11]  M. Tian, X. Yang, Y. Zhang, Barrier option 

pricing of mean-reverting stock model in 

uncertain environment, Journal of 

Mathematics and Computers in Simulation, 

166(2), 2019, 126-143. 

[12]  Y. Zhu, Uncertain fractional differential 

equations and an interest rate mode, 

Mathematical Methods in the Applied 

Sciences, 38(15), 2015, 3359-3368. 

[13]  Y. Zhu, Existence and uniqueness of the 

solution to uncertain fractional differential 

equation, Journal of Uncertainty Analysis 

and Applications, 3(5), 2015, 1-11. 

[14]  K. Yao, X. Chen, A numerical method for 

solving uncertain differential equations, 

Journal of Intelligent & Fuzzy Systems, 25(3), 

2013, 825-832. 

[15]  Z. Lu, Y. Zhu, Numerical approach for 

solution to an uncertain fractional differential 

equation, Applied Mathematics and 

Computation, 343(15), 2019, 137-148. 

[16]  K. Yao, Extreme values and integral of 

solution of uncertain differential equation, 

Journal of Uncertainty Analysis and 

Applications, 1(2), 2013, 1-21. 

[17]  K. Yao, A type of nonlinear uncertain 

differential equations with analytic solution, 

Journal of Uncertainty Analysis and 

Applications, 1(8) 2013, 1-10. 

[18]  K. Yao, Z. Qin, A modified insurance risk 

process with uncertainty, Insurance: 

Mathematics and Economics, 62, 2015, 227-

233. 

[19]  Y. Sun, T. Su, Mean-reverting stock model 

with floating interest rate in uncertain 

environment, Fuzzy Optimization and 

Decision Making, 16, 2017, 235–255.  

[20]  M. Tian, X. Yang, S. Kar, Equity warrants 

pricing problem of mean-reverting model in 

uncertain environment, Physical A: 

Statistical Mechanics and its Applications, 

531, 2019, 12-14. 

[21]  X. Yang, Z. Zhang, X. Gao, Asian-barrier 

option pricing formulas of uncertain financial 

market, Chaos, Solitons and Fractals, 123, 

2019, 79-86.  

[22]  Z. Lu, H. Yan, Y. Zhu, European option 

pricing model based on uncertain fractional 

differential equation, Fuzzy Optimization and 

Decision Making, 18, 2019, 199-217. 

https://link.springer.com/journal/40467
https://link.springer.com/journal/40467
https://content.iospress.com/journals/journal-of-intelligent-and-fuzzy-systems

