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1. Introduction: 
Multiplication modules was introduced by 

Barnard [1] in 1981 and after some time 

using the concept prime submodules of 

modules, the concept of weak multiplication 

modules was developed and many more  

results have been given [ 5]. In this line of 

research Nezhad and Naderi [6] has also 

defined the notion of residual of a 

submodule in a module and obtained some 

related results on prime and semiprime 

submodules of multiplication modules. This 

paper continues this line of research for weak 

multiplication modules. 
 

Throughout this paper all rings are 

commutative with identity and all modules 

are unitary. If N and K are submodules of R-

module M then the residual ideal N by K is 

defined as ( N :R K)  = { r   R   :  r K   

N}. Let N be submodule of M and I be an 

ideal of R the residual submodule N by I is 

defined as ( M :M I)  = { m    M   :  mI   

N}. 

 

In the special case in which N= 0 the 

ideal ( 0 :R K) is called annihilator of K and 

it is denoted by Ann R (K) also the 

submodule ( 0 :M I) is called the annihilator 

of in M and it is denoted by     Ann M (I). 

 

2. Preliminaries: 

 

In this section we give some basic 

definitions, theorems and propositions 

related to weak multiplication modules 

which are useful to understand the further 

results: 

 

Definition 2.1 [1] An R-module M is called 

a multiplication module if every submodule 

N of M, we have  N = IM, where I is an 

ideal of R. 

 

Definition  2.2 [7] A proper submodule N of 

an R-module  M  is said to be prime 

submodule of M if  ra    N  for  r    R and  

a  M  then either  a  N  or    r M     N  

(also see  examples in [3], [4] ).  

 

Here it is remarkable that N is prime 

submodule of M then P =  (N :R M) is 

necessarily a prime ideal of R and therefore 

N is sometime referred as P-prime 

submodule of M [7]. 

 

Definition 2.3  [5] An R-module M is called 

weak multiplication module if M doesn’t 

have any prime submodule or every prime 

submodule N of M, we have  N = IM , 

where I is an ideal of R. 

One can easily show that if an R-

module M is a weak multiplication module 

then N = (N :R M)M    for every prime 

submodule N of M [2]. 

Theorem 2.4  [6] Let M be a multiplication 

R-module and N a proper submodule of M. 

Then following statements are equivalent: 

 

1. N is a prime submodule of M. 

2. Ann R(M/N) is a prime ideal of R. 

3. N = PM for some prime ideal P of R 

with   AnnR M   P. 
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Theorem 2.5 [6] Let P be a proper 

submodule of multiplication R-module M. 

Then the following statements are 

equivalent: 

 

1. P is prime submodule. 

2. For every submodule N and K of M 

if NK   P then  either N   P  or  K  

 P; 

3. For every m, n     M,  if   mn   P  

then either m    P or  n    P. 

 

Definition 2.6 [6]  Let M be a multiplication 

R-module and N and L be submodules of M. 

The residual of L by N in M is 

(L :M N)  =  { m   M   :  mn     L    for  

every   n   N } 

 

We will call (0 :M N) annihilator of N in M 

and denoted by AnnM (N).  

 

Proposition 2.7 [6] Let M be a 

multiplication R-module and L and N be 

two submodules of M. Then    (L :M  N)  =  

(L :R  N) M. 

In particular    Ann M (N)  =  ( Ann R (N) M. 

 

Proposition 2.8 [6] Let M be a 

multiplication R-module and L be a proper 

submodule of M . Then the following 

statements are equivalent: 

1. L is a prime submodule of M. 

2. For every submodule N of M, if      

N   L   then  (L :M N )  =  L. 

 

Theorem 2.9 [8] Every non zero 

multiplication module has maximal 

submodules. 

 

 

3. Main Results: 

 

In this section we investigate the following 

results: 

 

Proposition 3.1 Let M be a multiplication 

R-module and N and L be submodules of M 

such that       L N. If L is a prime 

submodule of N then   (L :M  N)  is a prime 

submodule of M and so M  is weak 

multiplication module. 

 

Proof:  If L is a prime submodule of N then 

by remark (L :R N)  is a prime ideal of R and         

Ann R (M)     (L : R N)  and  so  (L :R M)M  

is a prime submodule of M(by theorem 2.4). 

Therefore  (L :M N) is a prime submodule of 

M (by proposition 2.7)  and so M is weak 

multiplication module. 

 

 

Proposition 3.2  Let M be a multiplication 

R-module, N a maximal submodule of M 

and P a prime submodule of M such that     

P  N . If L is a submodule of P then          

(L :M N) is also a submodule of P.  In 

Particular, if (L :M N) is a prime submodule 

of M then (L : M N ) is a minimal prime 

submodule of L  and so M is weak 

multiplication module. 

 

Proof: Let L be submodule of P   and m    

(L :M N ) . Hence   mN  L P . If m  P 

then N P by theorem 2.5 and so N  = P , 

because N is a maximal submodule of M , 

which is a contradiction. Therefore m P . 

Therefore (L :M N )   P  . In particular, if    

( L : M N ) is a prime submodule of M then 

(L :M  N) is a minimal prime submodule of L 

and so M is weak multiplication module. 

 

Corollary 3.3 Let M be a multiplication R- 

module and N be a maximal submodule of 

M. If       AnnM (N)  is a prime submodule of 

M then Ann M (N) is a minimal prime 

submodule of M and so M is weak 

multiplication module. 
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