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Abstract: Principal components Analysis is a 

mathematical procedure of data reduction technique that 

uses an orthogonal transformation to convert a set of 

observation of possibly correlated variables into a set of 

values of uncorrelated variables. This transformation is 

defined in such a way that the first principal component 

has the largest possible variance. Different approaches for 

selecting the principal component to be retained exist in 

many literatures; in this paper, a Comparative study 

between two approaches was carried out. The two 

approaches considered are proportion of variance 

accounted for and Eigen value one-criterion. Data of 
cholesterol level of human body was used to select the 

Principal Components and model adequacy checking was 

also used to test the fitted models. It was found that three 

Principal Components where retained using proportion of 

variance accounted for and R-square (coefficient of 

determination) of the fitted model is 22.7% and R-

squared adjusted was found to be 16.9%. Likewise for the 

Eigen value one criterion two Principal Components were 

retained, R-square and R-square adjusted were 23.3%, 

and18.5% respectively. By considering the result obtained 

it is clear that Eigen value one criterion is more preferred 
and desirable in reducing the Dimensionality of every 

data set in Principal component Analysis. 
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1. Introduction 
PCA, known as Principal Component Analysis – is a 

statistical analytical tool that is used to explore, sort and 

group data. What PCA does is, it takes a large number of 

correlated variables and transforms this data into a 

smaller number of uncorrelated variables, known as 

(Principal Components) or Artificial Variables while 

retaining maximal amount of variation, thus making it 

easier to operate the data and make predictions accounted 

to.  

1.1. Development of PCA (Historical Perspective of 

PCA 
According to Jolliffe [5], it is generally accepted that 

PCA was first described by  pearson in (1901), and also 

discusses the graphical representation of data and lines 

that  best represent the data. At the same year, also 

concludes that “the best-fitting straight line to a system of 

points coincides in direction with the maximum axis of 

the correlation ellipsoid”. And also states that the analysis 

used in his paper can be applied to multiple variables. 

However, PCA was not widely used until the 

development of computers. It is not really feasible to do 

PCA by hand when a number of variables is greater than 

four, as Such PCA is only useful for larger amount of 

Variables. 

According to Jolliffe [5], significant contributions to the 

development of PCA were made by Hotelling et al [4] 

before the expansion in the interest towards PCA. In 
1960s as the interest in PC’s rose, important contributors 

were Anderson [2] with a theoretical discussion and Rao 

[8] with numerous new ideas concerning uses, 

interpretations and extensions of PCA. Gower [3] 

discusses about link between PCA and other statistical 

techniques and Jeffers [6] with a practical application in 

two case studies. 

 

2. Procedure  
The PCA procedure involves finding the Eigen Value of 

the sample covariance matrix most especially when the 

variables are standardized. The variances of the principal 

components are Eigen values of the covariance matrix; 

there is P of them, some of which may be zero 

(0).Assuming that the Eigen values are ordered 

                                     iX   corresponds 

to the ith Principal component, the constants a11, a12, a13… 

aip are the elements corresponding to Eigen Vectors scale 

so that,   

a11
2 + a12

2 +…. + a1p
2 = 1. 

 

2.1   The Summary of the procedure are; 

 

1. Start by coding the variables X1… XP to have a 
zero mean and a unit variance. 

2. Calculate the covariance of matrix of the coded 
variances i.e. the correlation matrix. 

3. Find the Eigen Value X1… XP and the 
corresponding Eigen Vectors a11, a12… aip. The 

coefficient of the ith PC are then given as Xi,j 

while the Xi is its variance. 

4. Discard any component that only account for a 
small proportion of the variation in the data. 
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Let X1, X2, X3… XP be the variables under study 

then first principal component may be defined as; 

Z1 = a11x1 + a11x2 + aip xp 
such that variance of Z1 is as large as possible 

subject to the condition that; 

a11
2 + a12

2 +…. + aip
2 = 1 

This constant is introduced because if this is not 

done, then V(Z1) can be increased simply by multiplying 

any ai,j’s by a constant factor. The second principal 

component is defined as;  

Z2 = a21x1 + a22 x2 + … + a2pxp 

Such that V(Z2) is as large as possible next to 

V(Z1) subject to the constraint that 

a21
2 + a22

2 +… + a2p
2 = 1   

and Cov (Z1, Z2) = 0 and so on  

 

2.2 The Eigen value-one criterion.  

In principal components analysis, one of the 

most commonly used criteria for solving   the number-of-

components problem is the Eigen value-one criterion, 

also known as the Kaiser criterion (1960). The rationale 

for this criterion is straightforward. Each observed 

variable contributes one unit of variance to the total 

variance in the data set. Any component that displays an 

Eigen value greater than 1.00 is accounting for a greater 

amount of variance than had been contributed by one 
variable. Such a component is therefore accounting for a 

meaningful amount of variance, and is worthy of being 

retained. 

On the other hand, a component with an Eigen 

value less than 1.00 is accounting for less variance than 

had been contributed by one variable. The purpose of 

principal components analysis is to reduce a number of 

observed variables into a relatively smaller number of 

components. This cannot be effectively achieved if 
components that account for less variance than had been 

contributed by individual variables are retained. For this 

reason, components with eigenvalues less than 1.00 are 

viewed as trivial, and are not retained. 

2.3  Proportion of Variance Accounted for. 

Another Approach is Proportion of Variance Accounted 

for which involves retaining components that accounts 

for specified proportion (or percentage) of variance in the 

data set. For instance,  components  that accounts for at 

least 70% to 90% of the total variance are decided to be 

retained. Note that the computation starts with the highest 
eigenvalue and continues until the specified and desired 

proportion is reached.  This proportion can be calculated 

as;  

          

 
                                        

                                           
 

3. Analyses and Discussion of Result: 
  Data Sets  of   twelve (12) different variables X1, X2,…, 

X12 with cholesterol level in mg as dependent variable. X1 

represents Age, H2= Height in m, X3= Weight in kg, X4= 

diastolic pressure, X5= Body Mass Index, X6= length of 

the leg, X10= length of the elbow, X11= Wrist in cm and  

X12= Arm in cm. 

3.1 Methodology of the Analysis 

The estimated covariance matrix of the data above is 

given by; 

TABLE 1: Variance-covariance matrix. 

  0.1781    0.0551    0.3757    0.1922    0.1086    0.1768    0.1444    0.0638    0.0205    0.0088    0.0053    0.0618

    0.0551    0.1047    0.2620    0.1389    0.1243    0.1761    0.1055    0.04

ijS 

01    0.0661    0.0104    0.0082    0.0470

    0.3757    0.2620    1.9014    0.8236    0.3377    0.7831    0.4292    0.3035    0.1423    0.0422    0.0263    0.2783

    0.1922    0.1389    0.8236    0.4076    0.1832    0.4034    0.2353    0.1384    0.0705    0.0203    0.0133    0.1322

    0.1086    0.1243    0.3377    0.1832    0.2943    0.2433    0.1674    0.0553    0.0602    0.0121    0.0099    0.0578

    0.1768    0.1761    0.7831    0.4034    0.2433    0.5850    0.3346    0.1314    0.0888    0.0221    0.0152    0.1262

    0.1444    0.1055    0.4292    0.2353    0.1674    0.3346    0.2427    0.0738    0.0450    0.0124    0.0084    0.0714

    0.0638    0.0401    0.3035    0.1384    0.0553    0.1314    0.0738    0.0532    0.0197    0.0070    0.0043    0.0487

    0.0205    0.0661    0.1423    0.0705    0.0602    0.0888    0.0450    0.0197    0.0508    0.0064    0.0052    0.0259

    0.0088    0.0104    0.0422    0.0203    0.0121    0.0221    0.0124    0.0070    0.0064    0.0014    0.0009    0.0073

    0.0053    0.0082    0.0263    0.0133    0.0099    0.0152    0.0084    0.0043    0.0052    0.0009    0.0007    0.0048

    0.0618    0.0470    0.2783    0.1322    0.0578    0.1262    0.0714    0.0487    0.0259    0.0073    0.0048    0.0489

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

where ijS is the sample variance or covariance 

between variables ix  and jx .With  The aid of Mat lab 

package, each and every element in the matrix above is 

multiplied by 1000 .

 

From the above Variance-Covariance Matrix, table 2 

consisting of the correlation matrix is obtained. 
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 1.0000    0.4036    0.6455    0.7134    0.4741    0.5475    0.6946    0.6556    0.2152    0.5666    0.4619    0.6623

    0.4036    1.0000    0.5872    0.6722    0.7083    0.7113    0.6617    0.5368 

R 

   0.9065    0.8715    0.9339    0.6570

    0.6455    0.5872    1.0000    0.9355    0.4514    0.7425    0.6319    0.9540    0.4580    0.8281    0.7045    0.9124

    0.7134    0.6722    0.9355    1.0000    0.5288    0.8260    0.7480    0.9395    0.4900    0.8613    0.7674    0.9362

    0.4741    0.7083    0.4514    0.5288    1.0000    0.5863    0.6266    0.4421    0.4920    0.6018    0.6734    0.4815

    0.5475    0.7113    0.7425    0.8260    0.5863    1.0000    0.8880    0.7446    0.5151    0.7803    0.7360    0.7457

    0.6946    0.6617    0.6319    0.7480    0.6266    0.8880    1.0000    0.6496    0.4050    0.6794    0.6281    0.6553

    0.6556    0.5368    0.9540    0.9395    0.4421    0.7446    0.6496    1.0000    0.3788    0.8175    0.6962    0.9549

    0.2152    0.9065    0.4580    0.4900    0.4920    0.5151    0.4050    0.3788    1.0000    0.7627    0.8492    0.5199

    0.5666    0.8715    0.8281    0.8613    0.6018    0.7803    0.6794    0.8175    0.7627    1.0000    0.9441    0.8967

    0.4619    0.9339    0.7045    0.7674    0.6734    0.7360    0.6281    0.6962    0.8492    0.9441    1.0000    0.7961

    0.6623    0.6570    0.9124    0.9362    0.4815    0.7457    0.6553    0.9549    0.5199    0.8967    0.7961    1.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

From Table 2 above we obtain the eigen values of the 

above correlation matrix as; vv 1 = 8.594, 2 = 1.443, 

3 = 0.836, 4 = 0.439, 5 = 0.349, 6 = 0.114, 7 = 

0.128 , 

8 = 0.168, 9 = 0.160, 10 = 0.637, 11 = 0.052, 12 = 
0.046 

The computation is by considering the ’s with 
highest value   

i. 1

1 12

.717 70%
,...,



 
 

 
 

ii. 1 2

1 12

.8374 80%
,...,

 

 


 

 
 

iii. 1 2 3

1 12

.9071 90%
,...,

  

 

 
 

 
 

From the above result, it means that the first three 

Z’s could replace 12 variables by sacrificing negligible 

information about the total variation in the system. The 

scores of the principal components can be obtained by 

substituting the values of X’s in equation of Zi’s 

denoted by Z1, Z2, and  Z3.  

Z1 =   (-0.235)X1 + (-0.2900)X2 + (-0.3019)X3 + (-

0.3203)X4 + (-0.2338)X5 + (-0.2987)X6 + 

 (-0.2777)X7 + (-0.2997)X8 + (-0.2342)X9 + (-

0.3256)X10 + (-0.3101)X11 + (-0.3142)X12 
Z2 =   (0.3567)X1 + (-0.4167)X2 + (0.2558)X3 + 

(0.2179)X4 + (0.2288)X5 + (0.0479)X6 

+(0.1033)X7 + (0.3157)X8 +(-0.5388)X9 + (-

0.1138)X10 + (-0.2888)X11 + (0.1860) 12X   

Z3=  (-0.3381)X1 + (-0.0410)X2 + (0.2599)X3 + 

(0.1054)X4 + (-0.5408)X5 + (-0.2068)X6 + 

 (-0.4956)X7 + (0.2421)X8 + (0.2153)X9 + 

(0.1890)X10 + (0.1246) 11X  + (0.2612)X12 

However, using Eigen value one criterion, only two 
PC’s with corresponding Eigen values greater 

than one can be retained. Equation of Zi’s of 

the corresponding PC’s are: 

Z1 =   (-0.235)X1 + (-0.2900)X2 + (-0.3019)X3 + (-

0.3203)X4 + (-0.2338)X5 + (-0.2987)X6 + 

(-0.2777)X7 + (-0.2997)X8 + (-0.2342)X9 + (-

0.3256)X10 + (-0.3101)X11 + (-0.3142)X12 

Z2 =   (0.3567)X1 + (-0.4167)X2 + (0.2558)X3 + 

(0.2179)X4 + (0.2288)X5 + (0.0479)X6 

+(0.1033)X7 + (0.3157)X8 +(-0.5388)X9 + (-

0.1138)X10 + (-0.2888)X11 + (0.1860) 12X   

4. Conclusion 

 
The computation using the proportion of variance 

accounted for  shows that, 3 PC’s 

are to be retained for further analysis which yields or 
accounts  for most of the variance of the original data 

set. A model was fitted using the three retained PC’s 

and coefficient of determination was used to measure 

the adequacy of the fitted model; it was found that R2  

(coefficient of determination) is 22.7% and R2 

(adjusted) is 16.9%. Similarly, it also shows that 2PC’s 

are to be retained for Eigen value one criterion and  R2= 

23.3% and R2(adjusted) = 18.5%  respectively. The 

adequacy of the model  conclude comparatively that 

Eigen value one criterion approach of data reduction 

techniques of principal component analysis is more 

suitable and preferable in carrying out an analysis  of 
data with a high dimension. 
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