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Abstract 
 
 Cloud computing is transforming the entire IT industry, 

into a high-performance computing, and personal data shar-

ing and management. In cloud computing, computing power 

is supplied as a utility, similar to electricity or water. As 

such, service providers can centrally manage, maintain, and 

upgrade computing resources, discharging the burden from 

small business owners or those who do not have the exper-

tise or budget to handle the fast-changing computing infra-

structure. 

 

Introduction 
 

 Using the cloud for High Performance Computing 

(HPC) can substantially reduce the total cost of ownership 

by eliminating the need to maintain large-scale parallel ma-

chines and their energy-consuming power and cooling sys-

tems.[1,2] From a cost efficient  perspective, there are adjust-

ments in terms of resource provisioning. An HPC job, which 

can be perfectly parallelized, takes eight hours to complete 

using one computing node. If the cloud computing service 
provider charges for a job on a per-machine per-hour basis 

(that is, based on the accumulated machine time), instead of 

running it on one node for four hours, the job can be finished 

in one hour on four machines with four times speedup with 

the same utility charge i.e. four machine hours.  

 

One trend that complicates this adjustment is the diversi-

ty in a cloud computing environment. Although a cloud ser-

vice provider can start with nearly alike computing nodes, 

the facility will likely grow more diverse over time due to 

upgrades and replacement. Therefore, not only will each 

computing node’s performance and capability continue to 
deviate, the new computing nodes will also provide better 

performance for the same amount of power due to technolo-

gy scaling and architectural innovation. Because of this di-

versity, response times will vary significantly depending on 

provisioning policies. To alleviate (minimize) this variation 

and guarantee quality of service, the cloud provider might 

want to remove the slowest computing nodes. The question 

is how slow a physical node can be for a given task to main-

tain its optimal computing quality in terms of execution time 

and energy cost.  

 
To tackle this issue, we established a mathematical moel 

based on statistics for a diverse cloud environment. To un-

derstand optimal provisioning in a cloud, we used this model 

to evaluate the adjustment of a task’s execution time and 

energy consumption. 
 

Cloud Computing Model  

(Energy consumption w.r. to task execution time) 
 

For this study, we assume the workload is perfectly paral-

lelizable, which is often the case for throughput oriented 

computing in HPC and transactional processing applications. 

For example, the most common cloud computing application 

is file transferring on the Web. Servers in the cloud; can pro-

cess all the requests received by a Web service at the same 

time individually and independently. Therefore, the cloud 

can achieve n times faster when n nodes are deployed if and 

only if the number of concurrent users is always larger than 

or equal to n. Next, we assume that an entire workload can 

be evenly divided into m smaller job units without affecting 

the workload’s scalability. We also assume that m is larger 
than n, where n represents the maximum number of virtual 

machines in the cloud. (For simplicity,  m = kn, where k is a 

positive integer.) In this study, one job unit represents the 

smallest task running to the end on a single physical node 

without interruption. However, we do not consider intermit-

tent context switches within one job unit as interruption as 

long as the task keeps running on the same physical node. In 

addition, we do not allow a virtual machine to be migrated 

among physical nodes during a job unit’s execution because 

this migration will not only include the executable image but 

also all the architectural states, including the memory foot-
print. Data migration on interconnected cloud computing 

nodes would likely cause significant performance degrada-

tion due to peer-to-peer communication. 
 

Cloud Power and Performance Be-

haviour 

 

 Before going to power and performance in a diverse 
cloud, we present a scenario from a cloud administrator’s 

perspective.  

 

Typically, cloud service providers begin their cloud 

computing business with several nearly alike computing 

nodes. Over time, the cloud provider will replace some of 

the old computing nodes with newer nodes featuring the 

latest technologies. Gradually, the capability and perfor-
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mance of all machines in the cloud will become more dis-

similar. Although previous studies considered diversity at 

the microarchitectural [3] and system levels, [4] they all as-
sumed diversity in the same generation of manufacturing 

technology. We consider computing diversity in a broader 

sense.  

 

We reviewed the power and performance trends of com-

mercial microprocessors over the past few years and used 

our observations to justify our model assumption. We first 

plotted the thermal design power (TDP) numbers and the 

PassMark performance scores5 for several processors under 

65 W, including Pentium, Core 2, Core i3/i5/i7, and Xeon. 

This included all commercial desktop and server processors 
from Intel from January 2006 to February 2011, except 

Celeron processors and certain processors that did not report 

TDP or PassMark results. The solid line in Fig. 1. shows 

their asymptotic power consumption and performance trend 

between 2006 and 2011. The dashed lines without individual 

dots show the trends of two other machine groups based on 

their TDP: 70 W to 120 W and more than 120 W. We ap-

plied regression methods to estimate the relationship be-

tween power and performance over time. Taking all the 

samples into account, we plotted our regression models for 

power and performance (solid lines). 
 

  
Figure1(a) Power Consumption Figure 1(b) Performance  

 

As Figure 1(b) shows, the performance continues to im-

prove for each machine group across different generations. 

On the other hand, the TDP trend in Figure 1(a) shows neg-

ligible growth. More interestingly, the TDP trends for the 

two lower-power machine classes are decreasing. This de-
crease is the consequence of a recent awareness of the power 

wall, which gradually increases the heat dissipation cost. For 

the same reason, we anticipate that the power grade of future 

processors will remain below the bar. This also implies that 

with the same power budget, newer machines can deliver 

higher performance. In other words, performance per power 

(a metric derived by dividing the performance score by the 

power consumption) continues to grow over time. For ex-

ample, the 95 W Core i7 (Lynnfield), released in September 

2009, achieves higher performance than the 95-W Pentium 

D (Presler), released in January 2006. This difference is 

largely attributable to technological advances in micro archi-
tecture as well as scaled-down feature size and supply volt-

age. Given these observations, we define our model of pow-

er and performance for a future diverse cloud, based on two 

assumptions.  

 
First, the computing nodes in the cloud we analyze are dis-

similar having different micro architectures fabricated using 

different processes. Thus, the cloud provides varied capabil-

ity and process technologies.  

 

Second, the performance capabilities of these computing 

nodes are uniformly distributed (from low to high) but con-

sume exactly the same amount of power. The rationale be-

hind this second assumption is two- fold.  

 

First, for a given power budget, the performance of each 
machine class continues to improve linearly while their 

power envelope remains almost unchanged. In other words, 

the power efficiency measured by performance per power 

improves over time.  

Second, when a data centre phases out some computing 

nodes due to an upgrade, it can safely deploy new computing 

nodes only when these upgrades aggregated power con-

sumption does not exceed the original. Otherwise, the data 

centre must also upgrade its power delivery infrastructure as 

well as its cooling capacity to accommodate the new servers.  
 

Given this overhead, we expect that the replacement and 

upgrade will be done without altering the power delivery 

infrastructure. Therefore, we assume that the newly de-
ployed servers will improve performance linearly across 

different machine configurations while using the same 

amount of power.  

 

To express this distribution mathematically, we assume 

that the response time for executing a job unit in such a 

cloud is uniformly distributed from a seconds (the fastest 

node) to b seconds (the slowest node). Figure 2 shows the 

probability distribution function (PDF) of the response time 

for executing a job unit in this cloud. 

 

On the other hand, we assume that the cloud service pro-
vider can improve the worst-case response time by terminat-

ing physical nodes with the least performance. For example, 

when a cloud service provider decides to remove one-third 

of its physical nodes from the slowest batch, we assume that 

the new response time for executing a job unit of this cloud 

becomes a uniform distribution from a seconds to (a+ 2b)/3 

seconds, represented by  U(a,(a+2b)/3) [17]. As such, we as-

sume that the maximum number of virtual machines that can 

be allocated on this cloud also reduces in the same ratio.  

 

Figure 3 shows the impact of removing one-third of 
nodes from the cloud. The variable p in this figure represents 

the maximum number of virtual machines that can be allo-
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cated on the cloud, while n represents the maximum number 

of virtual machines for the original cloud as shown in Figure 

2. Moreover, the PDF in Figure 3 shows the improved 
worst-case response time as a result of removing one-third of 

the physical nodes from the slowest side.  

 

  
Figure 2 Figure 3 

 

Although dispatching more jobs to newly deployed serv-

ers with higher power efficiency increases energy efficiency, 

this is not the case for a data centre, for two reasons. First, 
for a data centre, it is important to balance the power draw 

across the AC phases. [6] The balance will break when jobs 

are distributed to only certain computing racks. Second, we 

want to minimize the number of hotspots for a data centre, a 

common consequence of unbalanced work- loads. Hotspots 

generally cause higher machine failure rates and require ad-

ditional attention and effort to remove the heat. 

 

Execution Time and Energy Con-
sumption 

 

We define the execution time of a given workload on a 

cloud as the time required to finish a workload consisting of 

m job units. When some job units are assigned to more than 

one virtual machine, the execution time, in our definition, is 

bounded by the virtual machine that finishes last. For exam-

ple, when an animator renders a movie comprising m inde-

pendent frames, the movie cannot be released before the last 

frame finishes rendering. In addition, when comparing the 

performance of cloud configurations, we use as the baseline 
the case of executing the same amount of workload on a 

virtual machine running on the fastest node. When we use 

more virtual machines to execute the workload in parallel, 

we use slower nodes to accomplish the task. As a result, the 

parallelized version could reduce the overall effectiveness of 

energy consumed in the cloud.  

 

Energy consumption is the total energy needed to com-

plete a given workload. In particular, when some physical 

nodes finish their assigned job units before the others, we 

assume that these nodes will not consume energy while wait-
ing for the others to finish. This is because, in a real world 

scenario, these nodes will either be assigned to other tasks or 

moved to a near-zero power state to save energy.[7] In addi-

tion, given that each computing node consumes the same 

amount of power, energy consumption as defined will be 

proportional to the total execution time. Therefore, we calcu-

late a parallelized workload’s utility consumption as the 
summation of each virtual machine’s execution time. To 

quantify the effectiveness of resource provisioning in a 

cloud, we use the energy-delay product (EDP), [8] which we 

calculate by multiplying the execution time (seconds) with 

the energy consumption (joules). We will use this metric in 

our subsequent evaluation when provisioning resources (that 

is, the number of virtual machines to allocate to achieve op-

timal energy efficiency). 

 

 Analytical Evaluation 

 

We use analytical models, based on our assumptions, to 

compare each configurations EDP to the baseline EDP. 

 

A. Assumptions : 
 

The baseline of our study assumes that the entire job is 

performed on one virtual machine running on the fastest 

physical node. In this case, the fastest physical node can 

retire a job unit every a seconds. Because there are m inde-

pendent job units in the entire workload, the baseline con-

figuration takes ma seconds to finish. This configuration 
consumes W× ma joules for completing the entire workload, 

where W represents a physical node’s power. Thus, the EDP 

of this study’s baseline is EDPbase = (W×ma)(ma) = 

Wm
2
a

2.  

 

B. Expectation-Based Analysis : 
 

We use an expectation-based analysis to determine a 

cloud model’s execution time and energy consumption. We 

use a new distribution function to represent the execution 

time of a virtual machine with more than one job unit. Exe-

cution time distribution across virtual machines. The PDF of 

the response time when using p virtual machines is given by 
U(a,(a+((b – a)p)/n)), as Figure (3) illustrates. However, 

when a virtual machine is responssible for more than one job 

unit (that is,  m/p units), the virtual machine’s total execu-

tion time cannot be modeled the same way. Rather, we mod-

el it as the summation of independently selected m/p sam-

ples from Figure (3). When we add independent samples 

from a uniform distribution, the summation’s distribution 

function tends to approach a normal distribution according 

to the central limit theorem.[9] This theorem proves that when 

we add more independent samples into the summation, the 

summation’s distribution will become more like a normal 
distribution. In addition, the summation of 12 samples is 

known to be good enoughto satisfy the central limit theorem. 

[9] In this case, we assume that a virtual machine is responsi-

ble for more than 12 job units by letting m ≥ 12n (that is, m 
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≥ 12p because p ≤ n). Now our goal is to obtain the mean 

and variance of the normal distribution representing the total 

execution time of a virtual machine responsible for m/p job 
units. First, we calculate the mean and variance for the orig-

inal uniform distribution, U(a,(a + ((b – a)p)/n)). 

 

Mean  = { a + a + [(b-a)p/n] } = a +   and  

 

Variance = {a+[(b-a)p/n] – a }2 = { x }2 

 

The central limit theorem shows that the summation of 

m/p independent samples from this distribution will become 

a normal distribution with the following mean and variance. 

 

N{ (a+ ),( )2} = N(µ , σ2) ------------  (1) 

 

For convenience, we use μ and σ
2
 to denote the distribu-

tion’s mean and variance. All in all, when using p virtual 

machines, each machine’s execution time will follow the 

normal distribution, N(μ, σ2). The ultimate question is, How 

many seconds of time will it take to finish the entire work-

load ? To answer this question,  first of all we must deter-

mine the expectation of the largest sample from N(μ, σ2) 

when we pick p samples. Because the overall execution time 

depends on the slowest virtual machine that finishes last, the 

largest of p samples will give the total execution time.  

 

C. Largest Sample 
 

Before finding the largest sample’s expectation, we dis-

cuss the same question for the standard normal distribution, 
N(0,1). Let pdf(x) be the PDF of the standard normal distri-

bution. In this PDF, let y be the largest sample among ran-

domly chosen p samples. For each case out of p cases, the 

probability of y being the largest sample is given as follows. 

 

Probability = pdf(y) [ ](p-t) 

 

Following equation gives the expectation of the variable 

y. 

 

x( )(p-1) x dy  = ExBp    

     --------------- (2) 

 

For convenience, ExB(p) denotes the expectation of the 

largest sample among p samples from the standard normal 

distribution. In addition, by substituting pdf(x) in Eq.(2) with 

Eq.(3), we can find the numerical values of ExB(p) for vari-

ous p. We show the results in the middle column of Table 1. 

 

 p df(x) = exp(-x2/ 2)  -------------- (3)  

Number 

of sam-

ples (p) 

Value 

using 

Eq.  2 

Expected 

values 

1 0.00000 -0.00001 

2 0.56419 0.56419 

4 1.02938 1.02938 

8 1.42360 1.42360 

16 1.76599 1.76599 

32 2.06967 2.06967 

64 2.34373 2.34373 

Table 1 : Expectation of the largest sample (ExB(p)) from 

N(0, 1). 

 

Because Eq.(2)’s complexity grows exponentially as p 

increases, we cannot find the exact numerical values of 

ExB(p) for p>64. To address this shortcoming, more scala-

ble way of approximating the values in Table 1. In this solu-

tion, first implement a random number generator that pro-

duces random numbers from the standard normal distribu-

tion. Using this random number generator, the solution picks 
p independent random samples and remembers the largest 

sample among them. This operation continues for a long 

enough time (for example, to produce the results in Table 1, 

simulator software may take millions of iterations.) and av-

erages the largest samples.[14] This experimental method 

generates the exact numerical values of ExB(p), as shown in 

the third column of Table 1, after averaging more than mil-

lions of trials. As a comparison of the second , third and 

fourth columns in the table shows, the mathematical accura-

cy is slightly compromised in exchange for scalability. The 

study of the largest sample in the standard normal distribu-

tion gives us an idea about the ExB(p) for other normal dis-
tributions.  

 

Let a random variable X follow  N(μ, σ2) with μ ≠ 0, σ ≠ 

1, σ ≠ 0, and a derived random variable Y = (X – μ)/σ. Then, 

Y follows N(0, 1) by recalling the property that if X follows 

N(μ, σ2) and a and b are real numbers, then aX + b follows 

N(aμ + b,(aσ)2). From Equ. (2), the expectation of the largest 

sample for Y is ExB(p) because Y = (X – μ)/σ, X = Yσ + μ; 

and the expectation of the largest sample for X is ExB(p) · σ 

+ μ. Now, we  can calculate the expectation of the largest 

sample for any arbitrary normal distribution.  
 

D. Execution Time And Energy Consump-

tion Analysis 
 
In our model, each of the p virtual machines is responsible 

for m/p job units, and the response time for each job unit 

follows U(a,(a+((b– a)p)/n)). We use the following equation 

to calculate the expectation of the time required on a virtual 

machine finishing last: 
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Execution time =  μ+ ExB(p) x σ   

       =  (a + + ExB(p) x  x  x ) 

       = (2n + (  - 1)p + ExB(p) + p 3/2  x (  - 1)) 

       = (2n + (  - 1)p + Unbalance (  , p, m)) 

 

In this equation, we name the second term unbalance, which 

becomes zero if and only if every virtual machine finishes at 
the same time. 

Unbalance (  , p, m) = ExB(p) + p 3/2 x (   - 1)  ---- (4) 

For example, a higher deviation from the normal distribu-

tion indicates that the random samples from this distribution 

are more spread out, increasing the probability of having 

more deviated samples. In our case, because we model a 

virtual machine’s finishing time by picking a sample from 

Equ. (1), more deviated samples indicate that the workload 
assignment is unbalanced among virtual machines executing 

this workload. In particular, a larger b/a will lead to a larger 

σ
2 in Equ.(1) and a larger Unbalance((b/a), p, m) in Equ. 

(4). Hence, we can conclude that a larger b/a value cause a 

more unbalanced workload distribution among virtual ma-

chines, degrading the overall performance. Also note that 

Unbalance ((b/a), p, m) is directly proportional to 1/m . Be-

cause m is independent of p and b/a, changing the value of 

m will not affect other variables in Equ. (4). This implies 

that a very large m will eventually zero out Eq. (4). Thus, we 

can express the execution time when m → ∞ as 

Execution time (m → ∞)  =  [2n + (  - 1)p] 

We also evaluate the energy consumption probabilistical-

ly. Because performance is bounded by the execution time 

of the virtual machine finishing last, we must calculate the 

expectation of the largest sample from Equ. (1). In contrast, 

to evaluate the utility consumption, we must focus on the 

average execution time of p virtual machines. This is be-

cause, in a normal distribution, the probability for having μ 

+ α samples is exactly the same as having μ – α samples. 
This fact indicates that the difference of having a virtual 

machine consuming α seconds more than the average is the 

same as having a virtual machine consuming α seconds less 

than the average. Therefore, we conclude that the expecta-

tion of the total execution time is given by μ × p, the number 

of virtual machines. Given the power of a physical node in 

the cloud is W, the total energy consumption will be as fol-

lows. 

Energy consumption  =W x [a + ]p   

                           = W x m [a + ] 

EDPexp(p) =  x{2n + (  - 1)p+Unbalance(  ,p,m)} x (2n 

+ (  - 1)p) 

 

=   x{2n+(  - 1)p + Unbalance(  ,p,m)}(2n+ 

(  -1)p) 

 

Similarly, we calculate the EDP for m → ∞ as follows. 

 

EDPexp,m → ∞ (p) =   x {2n + (  - 1)p}
2   --------- (5) 

 
To visualize the effect of a large m in the EDPexp metric, 

Fig. (4) shows the EDP analysis for m = 12n, m = 120n, and 

m → ∞ using the following coefficients: n = 16,384, b/a = 1, 

2, 3, 5, and ExB(p) from Table 1. To find the exact value of 

p that makes the EDP metric a global minimum point, we 

take the derivative of Equ. (5) with respect to p and set it to 

zero : 

{ x }= 0   ----------- (6)     

Here P = 2n/ (  - 1)  since p > 0.  

 

In the example of m → ∞ in Figure (4), we achieve the 

minimum EDP when p = 2n/(b/a – 1) = 16384 in Figure (4c)  

or p = 2n/(b/a – 1) = 8192 in Figure (4d). Again, p = n must 

be fulfilled while maintaining Equ. (6) to be energy-effective 

for all n virtual machines in the cloud. By combining two 
conditions, p = n and Equ. (6), we can calculate the require-

ment of b/a as n = 2n/(b/a –1); b/a = 3. This equation sug-

gests that in a heterogeneous cloud computing environment 

with uniformly distributed performance, physical nodes that 

respond 3 times slower than the fastest node should not be 

used when attempting to minimize the EDP.  

 

  
Figure 4(a) when b/a = 1 Figure 4(b) when b/a = 2 

  
Figure 4(c) when b/a = 3 Figure 4(d) when b/a = 5 

 

Figure 4. Example of expectation-based analysis 

where the total number of available virtual machines 

is 64 and above: When (response time of  slowest 

node b / response time of fastest node a) >3, using all 

available virtual machines shows deviation in  EDP. 
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