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Abstract

This paper uses structured design to implement and
simulate radix 12-point DFT by vhdl language. The 12-point
DFT can be calculated by radix-3 and radix 6 FFT with dec-
imation in time. It is a variant of split radix and can flexibly
implement a length of 2" x 3™ DFT. Novel order transfor-
mation of sub-DFTs and reduction of the number of real
addition and multiplication operations improve the viabil-
ity.The six point DFT can be simulated in modelsim using
system verilog language and the 12 point DFT can be simu-
lated in vhdl. The algorithm can evaluate a non-power-of-six
DFT, as long as its length- can be divisible by 6. In order to
reduce the number of operations, all sub DFTs are reordered
satisfactorily. The proposed algorithm shows that its imple-
mentation requires less real operations as compared with the
published algorithms. The pending update to system Verilog
contains several new packages and functions. The new
packages include support for both fixed-point and floating-
point binary math. These fully Non-synthesizable packages
will raise the level of abstraction in System Verilog. DSP
applications, which previously needed an independent pro-
cessor core, or required very difficult manual translation, can
now be performed within your system verilog source code.
In addition, Schematic-based DSP algorithms can now be
translated directly to System Verilog.

Index Terms - Discrete Fourier transform (DFT), Fast
Fourier Transform (FFT), general Split Radix, radix 6, Sys-
tem Verilog language

Introduction

Discrete Fourier Transform (DFT) plays a very im-
portant role in digital signal processing. It is a Fourier trans-
form for a finite domain, discrete time periodic function,
which is suitable for processing data stored in computers.
Basically it converts discrete time data into discrete frequen-
cy data and vice versa. The need for this conversion is that
our signals can be viewed in different domain, inside which
different difficult problems become simple to analyze. The
increasing application of digital equipment caused the com-
putation of discrete Fourier transform to become an im-
portant problem.

In the past few years, a number of algorithms have been
proposed for computing the discrete Fourier transform. To
determine the DFT more quickly and with less complexity,
Fast Fourier transform algorithms have been developed
which are generally known as FFT. Most of these algorithms
deal with power-of-2 sequence lengths. The first widely
known achievement in this area was the radix-2 FFT. The
number of arithmetic operations required for calculating the
FFT is one of the important factors in evaluating any FFT
algorithm. The radix-2 FFT algorithm is in the long list of
practical DFT algorithms with reduced arithmetical com-
plexity for data sizes N=2', r being an integer.

The increased usage of FFTs made us concentrate on the
complexity, memory usage, and power consumption of the
algorithms when used in digital signal processing applica-
tions. This lead to the improvement of FFT for different
length sequences such as radix-3, radix-6, radix-12 DFTSs.
These FFT algorithms are developed from radix-2 FFTs and
they are found to be better than the existing algorithms.
Simultaneously, the researches on the algorithms for compu-
ting length- N=k™ DFT have resulted in the presentation of
the methods for k=3 and k=6. Due to the poor efficiency, the
algorithms for k™ are of trivial practical meanings when k=
2. However, there exists many applications in which the
sequence lengths are 3™ and 6™ [1]. So an algorithm for se-
quence length-N=6™ have been developed which shows
increased performance than the existing algorithms.

Literature Survey

A.Radix-2/8 FFT algorithm for length
gqx2™ DFTs

A new radix-2/ 8 fast Fourier transform (FFT) algo-
rithm have been proposed for computing the discrete Fourier
transform of an arbitrary length N= qx2™, where m is an odd
integer [2]. It reduces substantially the operations such as
data transfer, address generation, and twiddle factor evalua-
tion or access to the lookup table, which contribute signifi-
cantly to the execution time of FFT algorithms. It is shown
that the arithmetic complexity (multiplications, additions) of
the proposed algorithm is, in most cases, the same as that of
the existing split-radix FFT algorithm. The basic idea behind
the proposed algorithm is the use of a mixture of radix-2 and
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radix-8 index maps. The algorithm is expressed in a simple
matrix form, thereby facilitating an easy implementation of
the algorithm, and allowing for an extension to the multidi-
mensional case. For the structural complexity, the important
properties of the Cooley—Tukey approach such as the use of
the butterfly scheme and in-place computation are preserved
by the proposed algorithm. It is suitable only for DFT of
sequence length N=gx2™.

B.Radix 2/16 Split-Radix FFT Algorithms

A radix-2/16 decimation-in-frequency (DIF) fast Fourier
transforms (FFT) algorithm and its higher radix version,
namely radix-4/16 DIF FFT algorithm, have been proposed
by suitably mixing the radix-2, radix-4 and radix-16 index
maps, and combing some of the twiddle factors [3]. It is
shown that the proposed algorithms and the existing radix-
2/4 and radix-2/8 FFT algorithms require exactly the same
number of arithmetic operations (multiplications,additions).
By using this technique, it can be shown that all the possible
split-radix FFT algorithms of the type radix- 27/2" for com-
puting a 2"point DFT require exactly the same number of
arithmetic operations. This algorithm is suitable only for
sequence of length N=2", m is integer.

C.New radix-6 FFT algorithm

A new radix-6 FFT algorithm suitable for multiply-
add instruction have been proposed. The new radix-6 FFT
algorithm requires fewer floating-point instructions than the
conventional radix-6 FFT algorithms on processors that have
a multiply-add instruction. Techniques to obtain an algo-
rithm for computing radix-6 FFT with fewer floating-point
instructions than conventional radix-6 FFT algorithms have
been proposed [3]. The number of floating-point instructions
for the new radix-6 FFT algorithm is compared with those of
conventional radix-6 FFT algorithms on processors with
multiply-add instruction.

The 12-pointRadix 3/6 Split Radix
Algorithm

A.Radix-3 and Radix-6 FFT approach

The proposed Radix 3/6 algorithm is based on mixture of
Radix-3 and Radix-6 FFT algorithms. The definition of DFT
is given by,
N-1
X(k) = Z x(n) e~J2mnk/N

n=0

n=o x (MW 1)

W]\;lk — e—j2nnk/N
2nnk
N

=cos( ) —
jsin(*R) (2)

In (1)and( 2) N is the number of data, j=+ -1 and Wy is
the twiddle factor. (1) is called the N-point DFT of the

sequence of x(n). For each value of k, the value of X(k) rep-
resents the Fourier transform at the frequency % .
The Radix—3 DIT-FFT can be derived as,

N-1
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Each of the sums, P(k), Q(k), and R(K), in (3) is recognized
as an N/3-point DFT. The transform X(k) can be broken into
three parts as shown in (4).

X(k) = P(k) + W¥Q(k) + WEkR(k)

N (k+5) 2(k+)
X(k+2) =Pt +w, P +W, PR

= P(k) + WBWEQ(k) +
W23 W2kR (k)

2N =) 2(k+50)
X(k+Z) =P +w, > QU +W, > R(K)
= P(k) + W2BWkQ(k) +
WBWEkR(k)  (4)
k=012 b1
=012.....3

In (4), the periodicity propertyW,¥*N = W¥ is used to
simplifylWs = W4l The complex numbers Wiland W2 can
be expressed as shown in (5)
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The Radix—6 DIT-FFT can be derived as,
N-1
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Each of the sums, P(k), Q(k), and R(k), in (6) is recognized

as an N/6-point DFT. The transform X(k) can be broken into

three parts as shown in (7).
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The complex numbers W2 W2, W2, W, W can be

expressed as shown in (8)
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(®)
B.Split Radix 3/6 FFT approach

The Algorithm decomposes a DFT of size-N=6m into
one length-N/3 and four length-N/6 sub DFTs. The
flexibility of the decomposition enables the al-
gorithm to be competent at the implementation of
a non—power—of—six DFT, while its length can ex—
actly divided by 6. Appropriate permutations are
used for sub DFT input sequences to reduce the
computational intension.

The definition of DFT is
Xk = Zn 0Xn Wnk (9)

WhereW,, = e7*™", j = +/—1 the length N of sequence x(n) is
assumed as an integer, which is divisibly by six. For lengths
N of DFT, powers-of-six would be best for the proposed
algorithm. Obviously, the DFT can be divided into three
length N/3 sub-DFTs. In order to derive a best possible algo-
rithm, we continue to decompose the three sub-DFTs. Due to
no scaling factor in front of it, the first sub-DFT should be
let as it is and directly go into the recursive decomposition of
the next stage. The other two sub DFTs are divided into four
sub-DFTs of length-N/6. Actually, if the length of a DFT
can be divided by 6, the DFT can be decomposed by the
algorithm. The generalized length- N can be assumed as
N=2"x3", where r>m-1. The decomposition of a DFT of size
N=2'x3" i |s denoted by,

N
X(k) = Zfl 0 x3n WN/3+W2rW3m Zn 0 x6n+2T 3mWN/6
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Where the four length- N/6 sub DFTs are reordered. To sim-
plify the description, (10) can be expressed by,

X(k) = Ak + WZrW3mBk + Ck+W3mEk+W2r W3ka (ll)
Where,
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Fig 1. Block diagram of Split Radix 3/6 FFT

In (11), WZTW3mBk and Wz‘r wnF, can be treated in pairs,
since wr Wska and Wz‘r “wFyis a conjugate-pair. In the

similar Way,wsm and wy; wcan be handled with in pairs. The
direct implementation of (11) performs many unnecessary

operations, since the computations of
Xk'XN+k’X2N+k’X3éV+k'
Xﬂ kXﬂ . turn out to share many calculations each other.

In partlcular if we add to, the size-N/6 to k DFT are not
changed (because they are periodic in k), while the size-N/3

DFT is unchanged if we add to 2N/6 to k. So, the onIy things
that changes are the wirwim, wi*wgi and wgk terms. In
order to reduce the number of the operations, the following
six identities are necessary,

X = A+Whwhkn B +wi i wikFy)

+ (WimCretwim By ) (13)
"k k 2T k. —k
Xk+% = Ay + (W2 wirwimBtws 2 wyr wemFy,)
+(WE WhnCtwi? Wik E) (14)
X, v =4+ (W2r+1W§rW§mBk+w3_2 wy K wim F)
6
+(wE " Whn Ctwy 2’”“w3mEk) (15)
_ 1k R
Xk+% = Apsnse — (W5 wh-wknBtws?  wiFwikF)
+WE T W Ctws T WIKE,) (16)
_ koK -k, —k
Xk+% = Ak+N/6 - (WZTW3mBk+W2r W3ka)
+(W§ka+W3mEk) (17)
_ k 2T k. —k
Xk+% = Apinse — (W3 "wk-wkn B twi? wiFwikFy)
+(WE Whn Ctwi? Wik E,) (18)

A complete output set {X,} can be obtained if we
let range from 0 to N/6—1in the above six equations. We
now summarize the scheme of the proposed radix-3/6 FFT
algorithm. The initial input sequence of length- is decom-
posed into five sub-sequences. This process is repeated suc-
cessively for each of new sub-sequences, until the sizes of
all sub DFTs are indivisible by 6. Figs 2,3,4 illustrate the
flow graph of 3, 6 and 12 point radix 3/6 algorithm (2-points
and 4-points FFT can be performed with SRFFT).

0 0
+
1 —— 1
L Re(ws) +
2 _ 2
JIm(ws)*
Re(ws)! =-1/2

Fig 2. Flow graph of 3-point FFT

C.Performance Analysis of the Algorithm
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In this section, we consider the performance of the pro-
posed algorithm by analysing the computational complexity
and comparing it with existing algorithms. Let My and Ay
be, respectively the number of multiplications and additions.
We assume that a 3-point DFT requires 4 real multiplica-
tions and 12 real additions (some algorithm assumes that a
3-point DFT is calculated with 2 real multiplication and 12
real additions, since one need not multiply %2 and the multi-
plication by 1/2 can be evaluated with bit shift).

The general butterfly of the proposed algorithm
requires 16 real multiplications and 40 real additions. In
general butterfly we evaluate (13) with 8 real multiplication
and 16 real  additions.  Because  wrnwkn=
wik wik and w2k = w3 We calculate (14) with 8 real
multiplications and 8 real additions because we share real
additions with which have been undertaken in evaluating
(13). We evaluate (13) with only 4 real additions, because
1+u+u*=0. Furthermore, we perform (16)—(18) at cost of 12
real additions, because all multiplications and some addi-
tions have been calculated in (13)—(15).

x(0)—— 2-points 3-points X(0)

(3 FFT FFT X(1)

x(1) X(2)

x(2) 3-points X(3)

x(4) FFT X(4)

x(5) X(5)

Fig: 3 Flow graph of 6-point 3/6 FFT

%(0) — 4-point 3-point X(0)
3 1 eprr FFT X
x(6) — X(2)
%(9) — 3-point X(3)
x(7) —7 2-point FFT X(4)
x(1) — TFT X05)
x(4) — 2-point 3-point X(6)
x(10)—f FfT FFT X(7)
x(8) T 2-point X(8)
) — = 3-point X
x(5) — 2-point FFT X(10)
x(11)y—_ FFT j : X(11)

Fig 4. Flow graph of 12-point 3/6 FFT

There are six special cases. The first special case, when
k=0 requires 8 real multiplications and 32 real additions. In
this case, (13) is evaluated with 8 real additions (one need
not multiply 1), (14) is implemented with 4 real multiplica-
tions and 6 real additions because we use real additions
which have been undertaken in evaluating above calculation,
(15) can be calculated with only 2 real additions, because we
need not add the duplicate portion between u and u*. In the
same way, (16)—(18) can be performed by only 4 real multi-
plications and 16 real additions. This special butterfly is il-
lustrated in Fig. 3. The second special case, when k=2"?x 3
™1 requires the number of operations equals that of the first
case. In this case, all rotator factors of sub DFTs in (15) can
be omitted, so it can be evaluated with 8 real additions,
(13)can be implemented with 4 real multiplications and 6
real additions,(15) can be calculated with only 2 real addi-
tions. Similarly,(16)—(18) can be performed by only 4 real
multiplications and 16real additions.

The third special case is when k=2"3x 3™. This butterfly
requires 12 real multiplications and 36 real additions. In this
case, (13) requires extra 4 real multiplication and 4 real addi-
tions over the first case. The computations of the rest ones
are similar with that of the first case. The fourth special case
is when k=2"*x3™*. This butterfly requires also 12 real mul-
tiplications and 36 real additions. In this case, (15) requires
extra 4 real multiplication and 4 real additions over that of
(15) in the second case. The computations of the rest equa-
tions are similar with that of the second case. The fifth spe-
cial case is when k mod 3™ and k mod 2"3£0. This butterfly
requires 16 real multiplications and 36 real additions. In this
case, (13) requires extra 8 real multiplication and 4 real addi-
tions over the first case. The sixth special case is when, k
mod 3™'=0, k mod 3"™#0 and k mod 2"°. This butterfly re-
quires 16 real multiplications and 36 real additions. In this
case, (15) requires extra 8 real multiplication and 4 real addi-
tions over the second case.

The decomposition in the proposed algorithm is con-
ducted recursively until the lengths of all sub DFTs cannot
be exactly divided by 6. In general, there are only 1 the first
special butterfly (if r>1and m>1), 1 the second special case
butterfly (if r>2and m>1), 1 the third special case butterfly
and 1 the fourth special case butterfly (if r>3and m>1 ). The
total number of the fifth and sixth type of butterflies is 2™ -
4. In additions, there are 2% (3™ 1) general butterfly.
Thus, the arithmetic complexity of the proposed algorithm
can be given as follows,

M +4M +8N
(M r=1m>1
3-8
Mpy/3+4Mp/6+8N
My={ RN = 2m > 1
3-16
M +4M +8N
MT >3m=>1
3-24
(19)
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AN /3+4AN/6+20N
(it
3-8
Apn/3+4AN /620N
AN:4 MR =2,m=>1
| 3-16
Ap j3+4AN /6+20N
| et yet 20 > 3 m > 1
3_2T+1_8

(20)

Simulation Results

The 12 point DFT sequence has been implemented
in VLSI and simulated using modelsim based on radix 3/6
FFT algorithm. The output is checked using the 12 point
radix 3/6 flow graph theoretically and it matches with the
simulated results. Fig 5, 6, 7 shows the simulation results of
12 point DFT sequence. Fig 8 shows the device utilization
summary of 12 point DFT sequence in Xilinx XSE.

=
-
-
-
-
-
-
-
-

Fig 7.Simulation screenshot 3

FFTALG Project Status
Project File: fialgise Current State: Synthesized
Module Name: led + Ermors: No Ertors
Target Device: xe3s250e-4pq208 + Wamings: 121 Wamings
Flg 5_Simu|ati0n Screenshot 1 Product Version: ISE92i * Updated: Sun Apr20 105708 2014
FFTALG Partition Summary

No parition information was found

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slices 367 148 14%
Number of Slice Flip Flops 18 4896 2% |
Number of 4inputLUTs m 439 4%
Number of bonded I0Bs 3 158 19%
Number of GCLKs 1 2% 4%

Fig 7.Simulation screenshot 4
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Conclusion

A radix 3/6 FFT algorithm is presented for length-6m DFT.
The proposed algorithm is a mixture of radix-3 and radix-6
algorithm. It can evaluate a non-power-of-six DFT, as long
as its length- can be divided by 6. In order to reduce the
number of operations, all sub DFTSs are reordered favorably.
The proposed algorithm shows that its implementation re-
quires less real operations as compared with the published
algorithms. Computational complexity is approximately
4Nlog2N-6N+8.Due to being an irregular integer for the
sequence lengths, it is difficult to gain a completely accurate
formula of computational complexity. The device utilization
summary shows that the area occupied by the algorithm is
very low.
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