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Abstract 
 

In implicit surface modeling, soft object modeling is getting 

attraction because it has lower computing complexity of 

union blends. However, existing set blends for soft objects 

always behaves like a pure union or intersection, Max() or 

Min() function, in non-blending regions for blending range 

control. As a result, when they are reused as a new primitive 

in other blends, their primitives always have similar 

subsequent blending surfaces with primitives in the later 

blends. To solve the problem, this paper proposes the non-

uniform scaling method. This method is a generalized method 

that can transform an existing union blend to a new union or 

intersection blend and additionally provide each primitive an 

individual subsequent blending range parameter for adjusting 

the blending range and size of each primitive’s subsequent 

blends. Thus, primitives of new blends are allowed to have 

different subsequent blending surfaces in later blends. 

Besides, through the proposed method, new two and high 

dimensional super-ellipsoidal union and intersection blends 

are also developed for soft object modeling. 

 

1. Introduction 

In soft objects modeling, a soft object is represented by a 

0.5 level surface of a non-negative and decreasing field 

function. A complex object is given by performing Boolean 

set blends on primitive soft objects, such as planes, ellipsoids, 

skeletons,..., etc. Set blends includes union, intersection and 

difference and they are applied to join intersecting primitives 

with transition surfaces additionally and automatically 

generated to erase and avoid non-smooth and sharp edges, 

kinks, and creases. Especially, because field functions are 

decreasing monotonically, a union of soft objects is obtained 

by soft blends [1, 2], requiring summation only. Existing field 

functions can be found in [1, 2, 3, 4, 5, 6, 7, 8, 9]. In the 

literature, existing set blends in soft object modeling include: 

(1). Pure union and intersection blends, Max and Min, were 

proposed in [10], but they are C0 continuous only and hence 

might generate non-smooth surfaces.  

(2). Super-ellipsoidal union blend [10] simulates Max union. 

It offers a curvature parameter n for varying the shape of the 

resulting transition on the blend and has Cn continuity. 

(3). A full family of set blends, union, intersection and 

difference, was proposed in [8], which do sum and product 

operations only. 

(4). To have better shape and size control on the transitions of 

the resulting blending, blends with blending range parameters 

and C1 continuity were developed. Blending range parameters 

are used to adjust the size of the transitions within a specific 

region without deforming primitives totally after blending, 

and C1 continuity allows them to be used to generate 

sequential blends. Regarding these, two-dimensional elliptic 

blends were developed in [11] and high-dimensional super-

ellipsoidal blends in [12]. High-order continuous blend was 

also developed in [13]. On the other hand, gradient-based 

blending ranges were also proposed in [12, 14, 15] to do bulge 

elimination. 

(5). Field functions offering inner and outer influential radii 

parameters were proposed in [7, 9].  Adjusting the inner and 

the outer radii parameters enables soft blend to vary their 

primitives’ blending range in blending. 

(6). Blends in [11, 16, 17] enable users to define a free-form 

blending curve point-by-point so that a free-form transition’s 

profile can be generated 

 

Regarding the scale method [12], it can develop blends 

Bk(f1,...,fk) with blending range parameters r1,…, rk, which 

offer a better shape and size control over the transitions and 

deform primitives locally with blending regions. In fact, local 

deformation of primitives after blending implies that Bk 

behave like a pure union Max(f1,...,fk) or an intersection 

Min(f1,...,fk) in non-blending regions after blending. 

Unfortunately, this also incurs the following difficulty in 

sequential blends. For example, in B2(Bk(f1,...,fk), fk+1) with 

range parameters ra and rb for Bk and fk+1 in B2, primitives f1,..., 

and fk always have the same blending range ra to blend with 

fk+1, and hence they have similar transitions in blends with fk+1. 

 

Therefore, the paper proposes the non-uniform scaling 

method. This method is capable of transforming an existing 

union blending operator with range parameters r1,…, rk into a 
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new union or intersection blending operator Bk(x1,...,xk), 

which additionally give each primitive a new subsequent 

blending range parameter mi, i=1 to k.  As a result, like 

B2(Bk(f1,...,fk), fk+1) stated above, f1,..., and fk can have different 

subsequent blends with fk+1, determined by mi and ra. That 

means the newly proposed blends offer respective blend range 

adjustments on primitives’ subsequent blend’s transitions.  

 

Since this non-uniform scaling method is a general method 

for transforming an existing blend into a new blend, this paper 

furthermore develops high-dimensional super-ellipsoidal and 

two-dimensional elliptic union and intersection blends from 

the proposed method. 

 

The remainder of this paper is organized as follows. Section 

2 describes related works and the difficulty in details. Section 

3 presents the non-uniform scaling method.  Section 4 

introduces differential new blends created from the proposed 

method in Section 3. Conclusion is given in Section 5. 

2. Related works of soft objects 

 

This section presents the definition of soft objects first and 

then describes blends on soft objects and their difficulty. 

 

2.1. Definition of a soft object 
 

A primitive soft object is defined using a field function 

fi(x,y,z):R3→[0, 1], i=1,...,k, and written as the level set  

                                 {(x,y,z)R3 | fi(x,y,z)=0.5}, 

denoted as fi=0.5 interchangeably. fi(x,y,z) is usually written 

as a composition of a potential function P and a distance 

function di by: 

fi((x,y,z))=P( di(x,y,z) ). 

P(d) maps R+ to [0, 1], R+{xR| x0}, and it is decreasing. 

And di(x,y,z) maps R3 to R+ and it decides the shape of 

fi(x,y,z)=0.5. Existing distance functions include sphere, 

ellipsoids, super-ellipsoids, cylinders, sweep objects,..., etc., 

in [1, 2, 3, 4, 5, 6, 18, 19, 20]. Existing potential functions are 

founded in [1, 2, 3, 7, 8, 9]. 

2.2. Set blends of soft objects 
 

Furthermore, a complex soft object is constructed from 

primitives fi=0.5, i=1,...,k, and written using a blending 

operator Bk(x1,...,xk):
kR+

→ to R+ by 

Bk(f1,...,fk)=0.5, 

which is called a blending surface on fi=0.5, i=1,...,k, too. The 

role of Bk(x1,...,xk) is to connect primitives fi=0.5 smoothly 

with transitions generated automatically.  

 

In the literature, set operators include:  

(1). Pure union and intersection [10]: Bk=Max(x1,...,xk) and 

Min(x1,...,xk), containing C0 continuity only;  

(2). Soft blends[2], union Bk=x1+x2+...+xk;  

(3). Super-ellipsoidal blends [10]: Bk=(x1
n+...+xn)1/n, where n 

is a curvature parameter to adjust the shape of the transition;  

(4). Perlin’s set blend [8]: union Bk=1-(1-x1)*...*(1-xk), 

intersection Bk=x1*x2*...*xk and difference Bk=x1*(1-x2)*...*(1-

xk). 

 

2.3. The scale method. 
 

To obtain better shape and size control of the resulting 

transitions of blends, the scale method was proposed in [12] 

to develop C1 continuous blends. In the scale method, given a 

base surface Hk(x1,...,xk)=0, an intersection blend is given by  

Bk(x1,...,xk)={
0 𝑀𝑖𝑛(𝑥1, … , 𝑥𝑘) = 0
  ℎ𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,        

where hp is the root h of the equation T(h)=0,  T(h)=Hk(x1/h-

1, ...,xk/h-1 ); and a union blend is given by  

Bk(x1,...,xk)= {
0 𝑀𝑎𝑥(𝑥1, … , 𝑥𝑘) = 0
  ℎ𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,        

where hp is the root h of the equation T(h)=0, T(h)=-Hk(1-x1/ 

h, ...,1-xk/h );   

 

Furthermore, Hk(x1,...,xk)= 01]/)[(1 =− − +=
ip

i
k
i ii rxr  was 

applied as the base surface and so super-ellipsoidal union and 

intersection blends Bk(f1,...,fk) were developed. These two 

blend have the following properties: 

(1). They offer blending range parameters ri and curvature 

parameters pi, i=1,...,k, to adjust the shape and the size of the 

transition as shown in Figure 1.  

(2).They can generate sequential blends with overlapping 

blending regions.  

(3). They behave similar to Max(f1,...,fk) and Min(f1,...,fk) in 

non-blending regions, and hence deform primitives locally,  

as in Figure 1. However, this property unfortunately also lead 

to the following difficulty: in sequential blends such as 

B2(Bk(f1,...,fk), fk+1)=0.5 with range parameters ra and rb for Bk 

and fk+1 in B2, primitives f1,…,fk always have the same 

blending range ra to blend with fk+1. Consequently, they have 

similar subsequent blending surfaces with fk+1, as shown in 

Figure 2(b). This means that blends Bk(f1,...,fk) created from 

the scale method cannot respectively adjust their primitives’ 

subsequent blends with fk+1 in sequential blends like 

B2(Bk(f1,...,fk), fk+1)=0.5 and keep the shape of Bk(f1,…,fk)=0.5 

unchanged.  
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To solve the difficulty stated above, Section 3 presents the 

non-uniform scaling method to develop new blends that offer 

each primitive an individual subsequent blending range 

parameter. 

3. The non-uniform scaling method  

 

This section presents the non-uniform scaling method to 

conquer the difficulty of the scale method stated in Section 

2.3. 

 

3.1. Steps of the non-uniform scaling 

method  
 

This method is to develop a new blend that gives an 

individual subsequent blending range parameter to each 

primitive for controlling primitives’ subsequent blends when 

the blend is used as a new primitive in sequential blends for 

soft object modeling. This method includes two steps as 

follows: 

Step (1): Obtain a base surface Hk(x1,...,xk)=0 that is an 

existing union blending operator Hk(x1,…,xk)=0 on fi(x,y,z) =0, 

with blending range parameters ri, i=1,...,k. Its shape is arc-

shaped in its blending region and the same as Min(x1,…,xk)=0 

in non-blending regions, like the shape of H2(x1, x2)=0 

displayed by the dotted curve in Figure 3. 

Step (2): Based on the surface Hk(x1,...,xk)=0 in Step (1), 

an intersection operator BAk:Rk→R+ and a union operator 

BSk:Rk→R+, with a blending range parameter ri and a 

subsequent blending range parameter mi, i=1,...,k, for each 

primitive , are derived by: 

(a).            BAk(x1,...,xk)={
0 𝑀𝑖𝑛(𝑥1, … , 𝑥𝑘) = 0
  ℎ𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (1) 

where hp is the root of equation T(h)=0 for a (x1,...,xk) and   

T(h)=Hk( x1/(0.5(1-m1)hm1)-1, ...,xk/(0.5(1-mk)hmk)-1 ).         (2) 

(b).     BSk(x1,...,xk)= {
0 𝑀𝑎𝑥(𝑥1, … , 𝑥𝑘) = 0
  ℎ𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,              (3) 

where hp is the root of equation T(h)=0 for a (x1,...,xk)  and  

T(h)=-Hk( 1-x1/(0.5(1- m1)hm1), ...,1-xk/(0.5(1-mk)hmk) );       (4) 

In the above, ri1 are required for i=1,...,k, in Eq. (4) and mi>0 

for i=1,...,k, in Eqs. (2) and (4). 

 

In fact, BAk(x1,...,xk)=h  and BSk(x1,...,xk)=h have shapes 

similar to the surfaces  

Hk(x1-1,...,xk-1)=0 and -Hk(1-x1,...,1-xk)=0 

which is performed non-uniform scaling via scaling factors: 

[0.5(1-m1)hm1, …, 0.5(1-mk)hmk]. 

Therefore, BAk and BSk in Eqs. (1) and (3) have the following 

properties: 

(1). No matter what positive values m1,..., and mk, are 

assigned, the shapes of intersection BAk(f1,...,fk)=0.5 and union 

BSk(f1,...,fk)=0.5 keep unchanged. In addition, this two blends 

always have blending ranges ri/2, i=1,…,k, for primitive f1,..., 

and fk and generate local blends without deforming primitives 

totally if  ri1 holds for i=1,…,k. 

 

      
               (a)                                          (b) 

Figure 1. (a) Intersection blends of six planes have different 

edges by setting planes different curvatures. (b) Union blends of 

two cylinders have different sizes of transitions, inside the box, 

by setting different blending ranges to primitives. All the 

primitives in (a) and (b) deform locally. 

         
                  (a)                               (b)                    (c)      

Figure 2. (a) Left: A union from the scale method B2(f1, 

f2)=0.5 of cylinders; Right: A toroid f3=0.5. (b). Sequential 

unions B2(B2(f1,f2), f3)=0.5, where f1 and f2 always have similar 

subsequent blends with the toroid f3. (c). Sequential unions 

BS2(BS2(f1,f2), f3)=0.5. Because BS2 is a union blend from 

Section 3 and so f1 and f2 have different subsequent blends 

with f3, pointed by arrows, by assigning f1 and f2 different 

values of subsequent blending range parameter. 

 
Figure 3. The shape of a two dimensional base curve H2(x1, 

x2)=0. 

x1

x2

r1

r2

H2(x1,x2) =0,

blending region

Min(x1,x2)=0,

non-blending region

 (0,0)

f1 

f2 

f3 
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This is proved by substituting 0.5 for hp in Eqs. (2) and (4), 

which yields that BAk(x1,...,xk)=0.5 and BSk(x1,...,xk)=0.5 are 

always the same as  

Hk(x1/0.5-1,...,xk/0.5-1)=0 and -Hk(1-x1/0.5,...,1-xk/0.5)=0. 

This means that BAk(x1,...,xk)=0.5 and BSk(x1,...,xk)=0.5 are 

always similar to Hk(x1-1,...,xk-1)=0 and -Hk(1-x1,...,1-xk)=0 

scaled by [0.5, …, 0.5] whatever values m1,..., and mk, are set. 

The shapes of two-dimensional intersection and union 

operators BA2(x1,x2)=0.5 and BS2(x1,x2)=0.5 are displayed in 

blue and green curves in Figure 4. 

(2). As displayed in blue and green curves in Figure 4, in non-

blending regions BAk(x1,...,xk) and BSk(x1,...,xk) behave 

respectively like  

         Min(0.5(x1/0.5)(1/m1),...,0.5(xk/0.5)(1/mk)) and 

   Max(0.5(x1/0.5)(1/m1),...,0.5(xk/0.5)(1/mk)).                (5) 

This implies that the shapes of BAk(x1,...,xk)=0.5 and 

BSk(x1,...,xk)=0.5 in non-blending regions are always the same 

as Min(x1,...,xk)=0.5 and Max(x1,...,xk)=0.5 whatever values 

m1,..., and mk are set . Eq. (5) are obtained by solving the roots 

h of equations: 

Min( x1/(0.5(1-m1)hm1)-1, ...,xk/(0.5(1-mk)hmk)-1 )=0 and  

Max( x1/(0.5(1-m1)hm1)-1, ...,xk/(0.5(1-mk)hmk)-1 )=0. 

Eq. (5) tells that primitives fi, i= 1 to k, become 0.5(fi/ 

0.5)(1/mi) after blending BAk(f1,...,fk) and BSk(f1,..., fk). As a result, 

among level surfaces BAk(f1,...,fk)=h or BSk (f1,...,fk)=h, hR, if 

mi>mj, level surface fi=h will dilate farther and more quickly 

than fj=h does, as shown in Figure 5. That is, if mi>mj, fi will 

have a larger subsequent blending surface than fi does when 

BAk(f1,...,fk) and BSk(f1,..., fk) are reapplied as new primitives in 

sequential blend. This solves the difficulty of the scale 

method stated in Section 2.3 by varying m1,..., and mk to adjust 

primitives’ subsequent blending surfaces. This is shown in 

Figure 6, where the subsequent blending surface of f1 gets 

larger and larger, as m1 for f1 in BA3 is increased from 0.3, 0.65, 

1, and 1.5 for the objects from top left to bottom right. 

(3). In sequential blends BS2(BAk(f1,...,fk),fk+1)=0.5 with 

blending ranges ra for BAk(f1,...,fk) and rb for fk+1 in BS2, varying 

mi makes primitives fi, i=1,...,k, in BAk (f1,...,fk) have different 

blending ranges by 

    (1-(1-ra)mi)/2, i=1,...,k, 

with fk+1 in BS2.  Especially, if mi>1, the blending range of fi 

with fk+1 is larger than ra/2; if mi<1, the blending range of fi 

with fk+1 is less than ra/2.  

 

Similarly, in BA2(BSk(f1,...,fk),fk+1)=0.5 with blending 

ranges ra for BSk in BA2, varying mi makes primitives fi, 

i=1,...,k, in BSk(f1,...,fk) have different blending ranges by 

    ((1+ra)mi-1)/2, i=1,...,k, 

with fk+1 in BA2. This means that if mi>1, the blending range of 

fi with fk+1 is larger than ra/2; if mi<1, the blending range of fi 

with fk+1 is less than ra/2.  

 

That is, as mi increases from 0 to , the subsequent 

blending surface of fi with fk+1 gets larger and larger. 

3.2. Calculating the gradients of BAk and BSk 
 

Calculating the gradients of BAk and BSk is usually required 

in a shading process, and hence it is described below. Let both 

equations T(h)=0 in Eqs. (2) and (4) be viewed and written as 

equations of variables h, x1,…, and xk, by 

  T(h)    G(h, x1,…, xk)=0. 

Then, from the implicit theorem, both the gradients of 

BAk(x1,…,xk) and BSk(x1,…,xk) in Eqs. (1) and (3) are calculated 

through the values of root hp, x1, … and xk, respectively, by: 

𝐵𝐴𝑘
(𝑥𝑖)(𝑥1, … , 𝑥𝑘)= -G(xi)(hp, x1,…, xk)/G(h)(hp, x1,…, xk), 

 

Figure 4. Blending operator curves of BA2(x1, x2)=0.5 (green), 

and BS2(x1, x2)=0.5 (blue) remain unchanged whatever values 

m1,..., and mk, are set. 

 
Figure 5. Level blending surfaces of an intersection on 

three parallel planes, by BA3(f1,f2,f3)=h with h=0.5, 0.45, 

0.4, 0.35 and 0.3 for the objects from left to right. Due to 

m1=0.6 and m2=2.8, f2 dilates farther and more quickly 

than f1 does. 

f1 

f 2 

f3 
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i=1,...,k, where G(h, x1,…,xk) is T(h) from Eq. (2); 

𝐵𝑆𝑘
(𝑥𝑖)(𝑥1, … , 𝑥𝑘)=-G(xi)(hp, x1,…, xk)/G(h)(hp, x1,…, xk) , 

i=1,...,k, where G(h, x1,…,xk) is T(h) from Eq. (4). 

4. Blending operators with C1  

continuity 

 

Based on the method in Section 3, two and high-

dimensional BAk  and BSk with C1 continuity are derived and 

presented in this section. 

 

4.1. Binary blending operators 
 

In fact, 2D H2(x1, x2)=0 in Step (1) can also be defined 

piecewise by the union of the curve Min(x1, x2)=0 and an arc-

shaped curve tangent to Min(x1, x2)=0. Thus, let 2D base curve 

H2(x1, x2)=0 be given by 
 𝐻2(𝑥1, 𝑥2) = 0   

≡ {
𝐻𝐻(𝑥1, 𝑥2) = 0 Blending region

𝑀𝑖𝑛(𝑥1, 𝑥2) = 0 Non − blending region
 

where HH(x1,x2)=r2
2x1

2+r1
2x2

2+r2
2r1

2-2r2
2r1x1-2r1

2r2x2+2px1x2, 

-<p<r1r2.  

Then, conic blending operators BA2 and BS2, possessing blend 

range parameters r1 and r2 and subsequent blend range 

parameter m1 and m2, for binary intersection and union blends 

are given, respectively, by: 

(a).                                BA2(x1, x2)=                                     (6) 

      

{
 
 

 
 (

𝑥1

0.5(1−𝑚1)
)
(
1

𝑚1
)

𝑥2 ≥ (1 + 𝑟2)0.5
(1−𝑚2)(

𝑥1

0.5(1−𝑚1)
)(
𝑚2

𝑚1
)

(
𝑥2

0.5(1−𝑚2)
)
(
1

𝑚2
)

𝑥1 ≥ (1 + 𝑟1)0.5
(1−𝑚1)(

𝑥2

0.5(1−𝑚2)
)(
𝑚1

𝑚2
)

ℎ𝑝 otherwise

           

where m1>0, m2>0, hpT -1(0),  and 

T(h)=HH(x1/(0.5(1-m1)h m1)-1,xk/(0.5(1-m2)h m2)-1); 

(b).                                 BS2(x1, x2)=                                     (7) 

     

{
 
 

 
 (

𝑥1

0.5(1−𝑚1)
)
(
1

𝑚1
)

𝑥2 ≥ (1 − 𝑟2)0.5
(1−𝑚2)(

𝑥1

0.5(1−𝑚1)
)(
𝑚2

𝑚1
)

(
𝑥2

0.5(1−𝑚2)
)
(
1

𝑚2
)

𝑥1 ≥ (1 − 𝑟1)0.5
(1−𝑚1)(

𝑥2

0.5(1−𝑚2)
)(
𝑚1

𝑚2
)

ℎ𝑝 otherwise

           

where m1>0, m2>0, r11, r21, hpT -1(0), and 

T(h)=-HH (1-x1/(0.5(1-m1)hm1), 1-xk/(0.5(1-m2)hm2)). 

To solve the root hp of the equation T(h)=0 in Eqs. (6)-(7), 

numerical methods: Newton-Ralphson method is applied by 

using  

h=Min( (x1/0.5(1-m1))1/m1, (x2/0.5(1-m2))1/m2  ) 

as the initial guess for Eq. (6), and by using 

h=Max( (x1/0.5(1-m1))1/m1, (x2/0.5(1-m2))1/m2  ) 

as the initial guess for Eq. (7). 

 

4.2. High-dimensional blending operators 
 

Let base surface Hk(x1,...,xk)=0 in Section 3.1 be given by 

super-ellipsoids  

            (a)     

                              

                           
   (b)      

Figure 6. (a). Left: An intersection BA3(f1,f2,f3)=0.5  on 3 

pairs of parallel planes; Right: A super-ellipsoid f4=0.5. 

(b). Unions of the objects in (a) by BS2(BA3(f1,f2,f3), 

f4)=0.5, where only the subsequent blending surface, of f1 

with f4 is enlarged gradually but the one of f2 with f4, 

pointed by a dotted arrow, remains unchanged, because  

m2 for f2  is always 2.8 but m1 for f1 in BA3 is increased 

from 0.3, 0.65, 1 and 1.5 for the objects from top left to 

bottom right. 

f 1 

f 1 

f 1 f 1 

f 4 f1 

f 2 

f3 
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Hk(x1,...,xk)= 01]/)[(1 =− − +=
ip

i
k
i ii rxr . 

Then, from Eqs. (1) and (3), super-ellipsoidal intersection and 

union operators BAk and BSk, with blend range parameters r1,..., 

and rk, and curvature parameters  p1,..., and pk, and subsequent 

blend range parameters m1,..., and mk, on soft objects are 

given, respectively, by 

(a).       BAk(x1,...,xk)= {
0 𝑀𝑖𝑛(𝑥1, … , 𝑥𝑘) = 0
  ℎ𝑝 otherwise

              (8) 

where mi>0 must hold for i=1,...,k, hp is the root of equation 

T(h)=0 for a point (x1,...,xk), and 

 T(h)= 1]/)1)5.0/([(1
)1(

− +− +=
− iii p

i
k
i

mm
ii rhxr ;  

(b).          BSk(x1,...,xk)= {
0 𝑀𝑎𝑥(𝑥1, … , 𝑥𝑘) = 0
  ℎ𝑝 otherwise

,         (9) 

where mi>0 and ri1 must hold for i=1,...,k, hp is the root of 

equation T(h)=0 for any point (x1,...,xk), and 

T(h)=1 iii p
i

k
i

mm
ii rhxr +=

−
 −+− ]/)1)5.0/([(1

)1( . 

The roots hp of equation T(h)=0 in Eqs. (8)-(9) are solved 

by Newton-Ralphson method and using the value 

h=Min( (x1/0.5(1-m1))(1/m1),..., (xk/0.5(1-mk))(1/mk)  ) 

as the initial guess for Eq. (8), and using the value 

h=Max( (x1/0.5(1-m1))(1/m1),..., (xk/0.5(1-mk))(1/mk) ) 

as the initial guess for Eq. (9). 

5. Conclusions 

 

In soft object modeling, existing blends do not have an 

individual blending range control on each primitive’s 

subsequent blend when they are used as a new primitive in 

other blends, i.e., sequential blends. As a result, their 

primitives always have similar subsequent blending surfaces. 

In order to solve the above difficulty, this paper has proposed 

the non-uniform scaling method. This method can transform 

an existing union blend into a new blend that additionally 

offer each primitive a subsequent blending range parameter 

for adjusting the primitive’s subsequent blend when the blend 

is used as a new primitive in other blends. Thus, all their 

primitives have different subsequent blending surfaces by 

varying primitives’ subsequent blending range parameters. 

From this method, elliptic and super-ellipsoidal union and 

intersection blends have been created successfully for soft 

object modeling. These newly developed blends: 

(1). Have respective blending range controls (respective 

subsequent blending range parameters) on every primitive’s 

subsequent blend and whatever values these parameters are 

set, the original blending surface always keep unchanged 

while reused as a new primitive in other blends. 

(2). Provide each primitive a blending range parameter and 

a curvature parameter to adjust the size and the shape of the 

transition of each primitive’s blending surface. 

(3). Are C1 continuous everywhere and hence can generate 

smooth sequential blends containing blending regions 

overlapped. 

(4). Are capable of deforming primitives locally after 

blending because they behave like pure union and intersection 

blends in non-blending regions. 
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